Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

CAKGC: A Clustering Method of Cybercrime Assets Knowledge Graph Based on Feature Fusion

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14870))

Included in the following conference series:

  • 447 Accesses

Abstract

Illegal gambling and pornography are becoming increasingly rampant in cyberspace over the last ten years. Existing research of cybercrime governance mainly relies on detecting illegal websites and using simple rules to determine organizational affiliation. These methods are not only inaccurate enough, but also ignore other cybercrime assets and their complex relationships. To address these problems, we propose a novel cybercrime assets knowledge graph clustering method (CAKGC) based on feature fusion which combines heterogeneous node attributes with graph structure features of knowledge graph. We carefully analyzed different kinds of multi-source heterogeneous cybercrime assets exposed on the Internet and their intricate relationships, providing preparation for designing ontology and constructing a comprehensive cybercrime asset knowledge graph. Moreover, two features extraction strategies are adopted to learn heterogeneous node attributes and graph structure features automatically. Finally, we fuse two-level features by dimensionality reduction and apply clustering algorithms to discover highly dense cybercrime assets of groups. Experimental results on real-world cybercrime datasets demonstrate the superiority of CAKGC in terms of clustering accuracy (ACC) and normalized mutual information (NMI) and purity, outperforming advanced baseline methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Gainsbury, S.M.: Online gambling addiction: the relationship between internet gambling and disordered gambling. Curr. Addict. Rep. 2(2), 185–193 (2015)

    Article  Google Scholar 

  2. Pau, L.F., Kirtava, Z.: International survey & analysis of laws and regulations addressing internet addiction and/or problematic usage of the internet. Available at SSRN 3550406 (2020)

    Google Scholar 

  3. Díaz, A., Pérez, L.: Online gambling-related harm: findings from the study on the prevalence, behavior and characteristics of gamblers in spain. J. Gambl. Stud. 37, 599–607 (2021)

    Article  Google Scholar 

  4. Hydén, H.: Pornography. the politics of legal changes. An opinion article. Front. Sociol. 8, 1250012 (2023)

    Google Scholar 

  5. Xiong, J.: Recognition of illegal websites based on similarity of sensitive features of mixed elements. In: 2022 International Conference on Computation, Big-Data and Engineering (ICCBE), pp. 9–12. IEEE (2022)

    Google Scholar 

  6. Li, Y., Lingjing, Y., Liu, Q.: HinPage: illegal and harmful webpage identification using transductive classification. In: Deng, Y., Yung, M. (eds.) Information Security and Cryptology: 18th International Conference, Inscrypt 2022, Beijing, China, December 11–13, 2022, Revised Selected Papers, pp. 373–390. Springer Nature Switzerland, Cham (2023). https://doi.org/10.1007/978-3-031-26553-2_20

    Chapter  Google Scholar 

  7. Zhao, J., Shao, M., Peng, H., Wang, H., Li, B., Liu, X.: Porn2vec: a robust framework for detecting pornographic websites based on contrastive learning. Knowl.-Based Syst. 228, 107296 (2021)

    Article  Google Scholar 

  8. Rao, R.S., Pais, A.R.: An enhanced blacklist method to detect phishing websites. In: Shyamasundar, R., Singh, V., Vaidya, J. (eds) Information Systems Security. ICISS 2017. LNCS, vol. 10717. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72598-7_20

  9. Sun, G., Ye, F., Chai, T., Zhang, Z., Tong, X., Prasad, S.: Gambling domain name recognition via certificate and textual analysis. Comput. J. 66(8), 1829–1839 (2023)

    Article  Google Scholar 

  10. Li, L., Gou, G., Xiong, G., Cao, Z., Li, Z.: Identifying gambling and porn websites with image recognition. In: Zeng, B., Huang, Q., El Saddik, A., Li, H., Jiang, S., Fan, Xiaopeng (eds.) PCM 2017. LNCS, vol. 10736, pp. 488–497. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-77383-4_48

    Chapter  Google Scholar 

  11. Chen, Y., Zheng, R., Zhou, A., Liao, S., Liu, L.: Automatic detection of pornographic and gambling websites based on visual and textual content using a decision mechanism. Sensors 20(14), 3989 (2020)

    Article  Google Scholar 

  12. Wang, C., Zhang, M., Shi, F., Xue, P., Li, Y.: A hybrid multimodal data fusion-based method for identifying gambling websites. Electronics 11(16), 2489 (2022)

    Article  Google Scholar 

  13. Yang, R., et al.: Scalable detection of promotional website defacements in black hat {SEO} campaigns. In: 30th USENIX Security Symposium (USENIX Security 21), pp. 3703–3720 (2021)

    Google Scholar 

  14. Yuan, K., et al.: Stealthy porn: Understanding real-world adversarial images for illicit online promotion. In: 2019 IEEE Symposium on Security and Privacy (SP), pp. 952–966. IEEE (2019)

    Google Scholar 

  15. Hong, G., et al.: Analyz ing ground-truth data of mobile gambling scams. In: 2022 IEEE Symposium on Security and Privacy (SP), pp. 2176–2193. IEEE (2022)

    Google Scholar 

  16. Gao, Y., Wang, H., Li, L., Luo, X., Xu, G., Liu, X.: Demystifying illegal mobile gambling apps. In: Proceedings of the Web Conference 2021, pp. 1447–1458 (2021)

    Google Scholar 

  17. Gomez, G., Moreno-Sanchez, P., Caballero, J.: Watch your back: Identifying cybercrime financial relationships in bitcoin through back-and-forth exploration. In: Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, pp. 1291–1305 (2022)

    Google Scholar 

  18. Yang, H., et al.: Casino royale: a deep exploration of illegal online gambling. In: Proceedings of the 35th Annual Computer Security Applications Conference, pp. 500–513 (2019)

    Google Scholar 

  19. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. Adv. Neural Inform. Process. Syst. 26 (2013)

    Google Scholar 

  20. Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embed dings for knowledge graph completion. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 29 (2015)

    Google Scholar 

  21. He, S., Liu, K., Ji, G., Zhao, J.: Learning to represent knowledge graphs with gaussian embedding. In: Proceedings of the 24th ACM International on Conference on Information and Knowledge Management, pp. 623–632 (2015)

    Google Scholar 

  22. Yang, B., Yih, W.T., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575 (2014)

  23. Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embed dings for simple link prediction. In: International conference on machine learning. pp. 2071–2080. PMLR (2016)

    Google Scholar 

  24. Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: Rotate: Knowledge graph embedding by relational rotation in complex space. arXiv preprint arXiv:1902.10197 (2019)

  25. Dong, X., et al.: Knowledge vault: A web-scale approach to probabilistic knowledge fusion. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 601–610 (2014)

    Google Scholar 

  26. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2d knowledge graph embeddings. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  27. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. Adv. Neural Inform. Process. Syst. 30 (2017)

    Google Scholar 

  28. Noy, N.F., McGuinness, D.L., et al.: Ontology development 101: a guide to creating your first ontology (2001)

    Google Scholar 

  29. CodePunch Solutions (2017). https://codepunch.com/

  30. Strehl, A., Ghosh, J.: Cluster ensembles-a knowledge reuse framework for combining partitionings. AAAI (2002)

    Google Scholar 

  31. Zhao, Y., Karypis, G.: Empirical and theoretical comparisons of selected criterion functions for document clustering. Mach. Learn. 55, 311–331 (2004)

    Article  Google Scholar 

Download references

Acknowledgments

This study was funded by National Key Research and Development Program of China (2021YFB3100500).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fan Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, B., Shi, F., Xu, C., Xue, P., Sun, J. (2024). CAKGC: A Clustering Method of Cybercrime Assets Knowledge Graph Based on Feature Fusion. In: Huang, DS., Chen, W., Guo, J. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2024. Lecture Notes in Computer Science, vol 14870. Springer, Singapore. https://doi.org/10.1007/978-981-97-5606-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5606-3_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5605-6

  • Online ISBN: 978-981-97-5606-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics