Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Intelligent Stock Forecasting by Iterative Global-Local Fusion

  • Conference paper
  • First Online:
Advanced Intelligent Computing Technology and Applications (ICIC 2024)

Abstract

Predicting future trends in financial time series data is a challenging task due to issues such as missing data, noise influence, and the heterogeneity gap between different data modalities. In this study, we propose a Global-Local Multimodal Guidance Fusion for Intelligent Stock Forecasting (GLMG) model to address these challenges. The GLMG model incorporates several novel components, including a wavelet transform-based approach for multi-scale feature extraction from image modality data, a Residual Modality Completion Module for handling missing data, a Global-Local Fusion Unit for balanced integration of cross-modal information, and a Stepwise Fusion module for reducing computational complexity and improving interpretability. We conduct extensive experiments on real-world stock market datasets to evaluate the performance of the GLMG model. The results demonstrate that our proposed approach outperforms methods, achieving an accuracy of 64.23% for stock risk early warning and 65.42% for stock movement forecasting, surpassing the best baseline by 6.30% and 6.28% respectively. The GLMG model also exhibits superior profitability, yielding a 16.23% profit while maintaining a low maximum drawdown of 7.96% in simulated trading scenarios.

J. Qin, B. You and F. Liu—Contributing equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ahelegbey, D.F., Billio, M., Casarin, R.: Bayesian graphical models for structural vector autoregressive processes. J. Appl. Economet. 31(2), 357–386 (2016)

    Article  MathSciNet  Google Scholar 

  2. Ahelegbey, D.F., Cerchiello, P., Scaramozzino, R.: Network based evidence of the financial impact of covid-19 pandemic. Int. Rev. Financial Anal. 81, 102101 (2022). https://doi.org/10.1016/j.irfa.2022.102101. https://www.sciencedirect.com/science/article/pii/S1057521922000710

  3. Buche, A., Chandak, M.B.: Enhancing predictive modeling for Indian banking stock trends: a fusion of BERT and attention-based BiLSTM approach. J. Intell. Fuzzy Syst. (2023). https://api.semanticscholar.org/CorpusID:261654967

  4. Chen, Y., Wei, Z., Huang, X.: Incorporating corporation relationship via graph convolutional neural networks for stock price prediction. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, CIKM 2018, pp. 1655–1658. Association for Computing Machinery, New York (2018). https://doi.org/10.1145/3269206.3269269

  5. Dai, W., An, Y., Long, W.: Price change prediction of ultra high frequency financial data based on temporal convolutional network. Procedia Comput. Sci. 199, 1177–1183 (2022)

    Article  Google Scholar 

  6. Fataliyev, K., Liu, W.: MCASP: multi-modal cross attention network for stock market prediction. In: Muresan, S., et al. (eds.) Proceedings of the 21st Annual Workshop of the Australasian Language Technology Association, Melbourne, Australia, pp. 67–77. Association for Computational Linguistics, November 2023. https://aclanthology.org/2023.alta-1.7

  7. Feng, F., Chen, H., He, X., Ding, J., Sun, M., Chua, T.S.: Enhancing stock movement prediction with adversarial training (2019)

    Google Scholar 

  8. Gupta, U., Bhattacharjee, V., Bishnu, P.S.: StockNet—GRU based stock index prediction. Expert Syst. Appl. 207, 117986 (2022)

    Article  Google Scholar 

  9. Huan, R., Zhong, G., Chen, P., Liang, R.: UniMF: a unified multimodal framework for multimodal sentiment analysis in missing modalities and unaligned multimodal sequences. IEEE Trans. Multimed., 1–16 (2023). https://doi.org/10.1109/TMM.2023.3338769

  10. Jothimani, D., Shankar, R., Yadav, S.S.: Discrete wavelet transform-based prediction of stock index: a study on national stock exchange fifty index (2016)

    Google Scholar 

  11. Liu, M., et al.: SCINet: time series modeling and forecasting with sample convolution and interaction. Adv. Neural. Inf. Process. Syst. 35, 5816–5828 (2022)

    Google Scholar 

  12. Mandal, R., et al.: Enhancing stock price prediction with deep cross-modal information fusion network. Fluct. Noise Lett. (2023). https://doi.org/10.1142/S0219477524400170

  13. Qin, J., Zong, L.: TS-BERT: a fusion model for pre-training time series-text representations (2021). https://openreview.net/forum?id=Fia60I79-4B

  14. Zhang, Q., Zhang, Y., Bao, F., Zhang, C., Liu, P.: SMPDF: stock movement prediction based on stock prices and text. Int. J. Gener. Syst., 1–18 (2023). https://doi.org/10.1080/03081079.2023.2294132

  15. Sun, L., Lian, Z., Liu, B., Tao, J.: Efficient multimodal transformer with dual-level feature restoration for robust multimodal sentiment analysis. IEEE Trans. Affect. Comput. 15(1), 309–325 (2024). https://doi.org/10.1109/TAFFC.2023.3274829

    Article  Google Scholar 

  16. Thakkar, A., Chaudhari, K.: Information fusion-based genetic algorithm with long short-term memory for stock price and trend prediction. Appl. Soft Comput. 128, 109428 (2022). https://doi.org/10.1016/j.asoc.2022.109428. https://www.sciencedirect.com/science/article/pii/S1568494622005555

  17. Wang, S., Qin, J., Rudolph, C., Nepal, S., Grobler, M.: R-Net: robustness enhanced financial time-series prediction with differential privacy. In: 2022 International Joint Conference on Neural Networks (IJCNN), pp. 1–9 (2022). https://api.semanticscholar.org/CorpusID:252625275

  18. Yuan, Z., Li, W., Xu, H., Yu, W.: Transformer-based feature reconstruction network for robust multimodal sentiment analysis (2021)

    Google Scholar 

  19. Zeng, J., Zhou, J., Liu, T.: Mitigating inconsistencies in multimodal sentiment analysis under uncertain missing modalities. In: Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp. 2924–2934 (2022)

    Google Scholar 

  20. Zhang, G.P.: Time series forecasting using a hybrid ARIMA and neural network model. Neurocomputing 50, 159–175 (2003)

    Article  Google Scholar 

  21. Zhang, Q., Qin, C., Zhang, Y., Bao, F., Zhang, C., Liu, P.: Transformer-based attention network for stock movement prediction. Expert Syst. Appl. 202, 117239 (2022). https://doi.org/10.1016/j.eswa.2022.117239. https://www.sciencedirect.com/science/article/pii/S0957417422006170

  22. Zuo, H., Liu, R., Zhao, J., Gao, G., Li, H.: Exploiting modality-invariant feature for robust multimodal emotion recognition with missing modalities (2022)

    Google Scholar 

  23. Zuo, Y., Kita, E.: Stock price forecast using Bayesian network. Expert Syst. Appl. 39(8), 6729–6737 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Qin, J., You, B., Liu, F. (2024). Intelligent Stock Forecasting by Iterative Global-Local Fusion. In: Huang, DS., Zhang, C., Guo, J. (eds) Advanced Intelligent Computing Technology and Applications. ICIC 2024. Lecture Notes in Computer Science, vol 14871. Springer, Singapore. https://doi.org/10.1007/978-981-97-5609-4_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5609-4_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5608-7

  • Online ISBN: 978-981-97-5609-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics