Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Effective Ensemble Classification Algorithm for Intrusion Detection System

  • Conference paper
  • First Online:
Recent Challenges in Intelligent Information and Database Systems (ACIIDS 2024)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2144))

Included in the following conference series:

Abstract

Using machine learning algorithm to build detection model of an intrusion detection system (IDS) to detect abnormal behaviors is an effective way that can be found in several studies; however, some different abnormal behaviors have similar characteristics that are quite difficult to be distinguished by using a single one detection model. To effectively identify such abnormal behaviors, the proposed method will construct a certain number of classifiers for different abnormal behaviors as a hierarchical and ensemble classification (detection) model. The proposed IDS will also adopt the domain adaptation method to remove the irrelevant augmented data because some of them may be assigned with incorrect labels during the augmentation process. Experimental results show that the proposed method can outperform other classification methods in terms of accuracy and recall such as machine learning, ensemble learning, and deep learning methods. It is shown that the proposed method can provide a promising design to detect different types of malicious intrusions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 84.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Farnaaz, N., Jabbar, M.: Random forest modeling for network intrusion detection system. Procedia Comput. Sci. 89, 213–217 (2016)

    Article  Google Scholar 

  2. Ahmad, Z., Shahid Khan, A., Wai Shiang, C., Abdullah, J., Ahmad, F.: Network intrusion detection system: a systematic study of machine learning and deep learning approaches. Trans. Emerg. Telecommun. Technol. 32(1), 4150–4178 (2021)

    Google Scholar 

  3. Selvakumar, B., Muneeswaran, K.: Firefly algorithm based feature selection for network intrusion detection. Comput. Secur. 81, 148–155 (2019)

    Article  Google Scholar 

  4. Li, X., Chen, W., Zhang, Q., Wu, L.: Building autoencoder intrusion detection system based on random forest feature selection. Comput. Secur. 95, 101851–101865 (2020)

    Article  Google Scholar 

  5. Gao, X., Shan, C., Hu, C., Niu, Z., Liu, Z.: An adaptive ensemble machine learning model for intrusion detection. IEEE Access 7, 82512–82521 (2019)

    Article  Google Scholar 

  6. Tama, B.A., Comuzzi, M., Rhee, K.-H.: TSE-IDS: a two-stage classifier ensemble for intelligent anomaly-based intrusion detection system. IEEE Access 7, 94497–94507 (2019)

    Article  Google Scholar 

  7. Yin, C., Zhu, Y., Fei, J., He, X.: A deep learning approach for intrusion detection using recurrent neural networks. IEEE Access 5, 21954–21961 (2017)

    Article  Google Scholar 

  8. Javaid, A., Niyaz, Q., Sun, W., Alam, M.: A deep learning approach for network intrusion detection system. In: Proceedings of the EAI International Conference on Bio-inspired Information and Communications Technologies, pp. 21–26 (2016)

    Google Scholar 

  9. Shone, N., Ngoc, T.N., Phai, V.D., Shi, Q.: A deep learning approach to network intrusion detection. IEEE Trans. Emerg. Top. Comput. Intell. 2(1), 41–50 (2018)

    Article  Google Scholar 

  10. Wang, M., Deng, W.: Deep visual domain adaptation: a survey. Neurocomputing 312, 135–153 (2018)

    Article  Google Scholar 

  11. Lu, C.-T., Tsai, C.-W.: An effective adaptive stacking ensemble algorithm for electricity theft detection. In: Proceedings of the ACM International Conference on Intelligent Computing and its Emerging Applications, pp. 22–27 (2021)

    Google Scholar 

  12. Shapoorifard, H., Shamsinejad, P.: Intrusion detection using a novel hybrid method incorporating an improved \(k\)NN. Int. J. Comput. Appl. 173(1), 5–9 (2017)

    Google Scholar 

  13. Malik, A.J., Khan, F.A.: A hybrid technique using binary particle swarm optimization and decision tree pruning for network intrusion detection. Clust. Comput. 21, 667–680 (2018)

    Article  Google Scholar 

  14. Kumar, G., Thakur, K., Ayyagari, M.R.: MLEsIDSs: machine learning-based ensembles for intrusion detection systems–a review. J. Supercomput. 76, 8938–8971 (2020)

    Article  Google Scholar 

  15. Aburomman, A.A., Reaz, M.B.I.: A survey of intrusion detection systems based on ensemble and hybrid classifiers. Comput. Secur. 65, 135–152 (2017)

    Article  Google Scholar 

  16. Rajagopal, S., Kundapur, P.P., Hareesha, K.S.: A stacking ensemble for network intrusion detection using heterogeneous datasets. Secur. Commun. Netw. 2020, 1–9 (2020)

    Article  Google Scholar 

  17. He, K., Kim, D.D., Asghar, M.R.: Adversarial machine learning for network intrusion detection systems: a comprehensive survey. IEEE Commun. Surv. Tutor. 25(1), 538–566 (2023)

    Article  Google Scholar 

  18. Vinayakumar, R., Alazab, M., Soman, K.P., Poornachandran, P., Al-Nemrat, A., Venkatraman, S.: Deep learning approach for intelligent intrusion detection system. IEEE Access 7, 41525–41550 (2019)

    Article  Google Scholar 

  19. Rm, S.P., et al.: An effective feature engineering for DNN using hybrid PCA-GWO for intrusion detection in IoMT architecture. Comput. Commun. 160, 139–149 (2020)

    Article  Google Scholar 

  20. Xiao, Y., Xing, C., Zhang, T., Zhao, Z.: An intrusion detection model based on feature reduction and convolutional neural networks. IEEE Access 7, 42210–42219 (2019)

    Article  Google Scholar 

  21. Chawla, A., Lee, B., Fallon, S., Jacob, P.: Host based intrusion detection system with combined CNN/RNN model. In: Proceedings of the Joint European Conference on Machine Learning and Knowledge Discovery in Databases, pp. 149–158 (2019)

    Google Scholar 

  22. Li, P., Pei, Y., Li, J.: A comprehensive survey on design and application of autoencoder in deep learning. Appl. Soft Comput. 138, 110176 (2023)

    Article  Google Scholar 

  23. Motiian, S., Piccirilli, M., Adjeroh, D.A., Doretto, G.: Unified deep supervised domain adaptation and generalization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 5715–5725 (2017)

    Google Scholar 

  24. Liu, M.-Y., Tuzel, O.: Coupled generative adversarial networks. In: Proceedings of the Advances in Neural Information Processing Systems, pp. 469–477 (2016)

    Google Scholar 

  25. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: Proceedings of the International Conference on Machine Learning, pp. 1180–1189 (2015)

    Google Scholar 

  26. Schuster, M., Paliwal, K.K.: Bidirectional recurrent neural networks. IEEE Trans. Signal Process. 45(11), 2673–2681 (1997)

    Article  Google Scholar 

  27. Dai, W., Yang, Q., Xue, G.-R., Yu, Y.: Boosting for transfer learning. In: Proceedings of the International Conference on Machine Learning, pp. 193–200 (2007)

    Google Scholar 

  28. Tavallaee, M., Bagheri, E., Lu, W., Ghorbani, A.A.: A detailed analysis of the KDD CUP 99 data set. In: Proceedings of the IEEE Symposium on Computational Intelligence for Security and Defense Applications, pp. 1–6 (2009)

    Google Scholar 

  29. Rao, B.B., Swathi, K.: Fast \(k\)NN classifiers for network intrusion detection system. Indian J. Sci. Technol. 10(14), 1–10 (2017)

    Article  Google Scholar 

  30. Rai, K., Devi, M.S., Guleria, A.: Decision tree based algorithm for intrusion detection. Int. J. Adv. Netw. Appl. 7(4), 2828–2834 (2016)

    Google Scholar 

  31. Anton, S.D.D., Sinha, S., Schotten, H.D.: Anomaly-based intrusion detection in industrial data with SVM and random forests. In: Proceedings of the International Conference on Software, Telecommunications and Computer Networks, pp. 1–6 (2019)

    Google Scholar 

  32. Tang, X., Tan, S.X.-D., Chen, H.-B.: SVM based intrusion detection using nonlinear scaling scheme. In: Proceedings of the IEEE International Conference on Solid-state and Integrated Circuit Technology (ICSICT), pp. 1–4 (2018)

    Google Scholar 

  33. Hsu, C.-J.: An effective semi-supervised learning method for intrusion detection system. Master’s thesis, National Sun Yat-sen University, Taiwan (2021)

    Google Scholar 

  34. Xu, W., Jang-Jaccard, J., Singh, A., Wei, Y., Sabrina, F.: Improving performance of autoencoder-based network anomaly detection on NSL-KDD dataset. IEEE Access 9, 140136–140146 (2021)

    Article  Google Scholar 

  35. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)

    Google Scholar 

  36. Tang, T.A., Mhamdi, L., McLernon, D., Zaidi, S.A.R., Ghogho, M.: Deep recurrent neural network for intrusion detection in SDN-based networks. In: Proceedings of the IEEE Conference on Network Softwarization and Workshops, pp. 202–206 (2018)

    Google Scholar 

  37. Laghrissi, F., Douzi, S., Douzi, K., Hssina, B.: IDS-attention: an efficient algorithm for intrusion detection systems using attention mechanism. J. Big Data 8(1), 149–169 (2021)

    Article  Google Scholar 

  38. He, H., Bai, Y., Garcia, E.A., Li, S.: ADASYN: adaptive synthetic sampling approach for imbalanced learning. In: Proceedings of the IEEE International Joint Conference on Neural Networks, pp. 1322–1328 (2008)

    Google Scholar 

  39. Tang, T.A., Mhamdi, L., McLernon, D., Zaidi, S.A.R., Ghogho, M.: Deep learning approach for network intrusion detection in software defined networking. In: Proceedings of the International Conference on Wireless Networks and Mobile Communications (WINCOM), pp. 258–263 (2016)

    Google Scholar 

Download references

Acknowledgment

This research was partially supported by the National Science and Technology Council (NSTC) of Taiwan, R.O.C., under the grant numbers NSTC-111-2222-E-110-006-MY3, NSTC-112-2628-E-110-001-MY3, and NSTC-112-2634-F-110-001-MBK.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chun-Wei Tsai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, JP., Wang, TL., Wu, YH., Tsai, CW. (2024). An Effective Ensemble Classification Algorithm for Intrusion Detection System. In: Nguyen, N.T., et al. Recent Challenges in Intelligent Information and Database Systems. ACIIDS 2024. Communications in Computer and Information Science, vol 2144. Springer, Singapore. https://doi.org/10.1007/978-981-97-5937-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-5937-8_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-5936-1

  • Online ISBN: 978-981-97-5937-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics