Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Massive Conscious Neighborhood-Based Crow Search Algorithm for the Pseudo-Coloring Problem

  • Conference paper
  • First Online:
Advances in Swarm Intelligence (ICSI 2024)

Abstract

The pseudo-coloring problem (PsCP) is a combinatorial optimization challenge that involves assigning colors to elements in a way that meets specific criteria, often related to minimizing conflicts or maximizing some form of utility. A variety of metaheuristic algorithms have been developed to solve PsCP efficiently. However, these algorithms sometimes struggle with the quality of solutions, impacting their ability to achieve optimal or near-optimal results reliably. To overcome these issues, this study introduces an adapted conscious neighborhood-based crow search algorithm (CCSA) and a massive variant of CCSA specifically tailored for PsCP. The performance of CCSA and MCCSA are evaluated on real and synthetic images and compared with state-of-the-art optimizers. The results showed that the adapted CCSA and MCCSA outperformed offering an effective strategy for image pseudo-colorization.

M. S. Viana and R. C. Contreras—Contributed equally to the work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alorf, A.: A survey of recently developed metaheuristics and their comparative analysis. Eng. Appl. Artif. Intell. 117, 105622 (2023)

    Article  Google Scholar 

  2. Asadzadeh, L.: A local search genetic algorithm for the job shop scheduling problem with intelligent agents. Comput. Ind. Eng. 85, 376–383 (2015)

    Article  Google Scholar 

  3. Askarzadeh, A.: A novel metaheuristic method for solving constrained engineering optimization problems: crow search algorithm. Comput. struct. 169, 1–12 (2016)

    Article  Google Scholar 

  4. Bianco, S., Citrolo, A.G.: High contrast color sets under multiple illuminants. In: Tominaga, S., Schettini, R., Trémeau, A. (eds.) Comput. Color Imaging, pp. 133–142. Springer, Berlin Heidelberg, Berlin, Heidelberg (2013)

    Chapter  Google Scholar 

  5. Bianco, S., Schettini, R.: Unsupervised color coding for visualizing image classification results. Inf. Vis. 17(2), 161–177 (2018). https://doi.org/10.1177/1473871617700682

    Article  Google Scholar 

  6. Burger, P., Gillies, D.: Interactive Computer Graphics: Functional, Procedural and Device-level Methods. Addison Wesley, Boston, MA (1989)

    Google Scholar 

  7. Christensen, J., Shieber, S.M., Marks, J.: Placing Text Labels on Maps and Diagrams, pp. 497–504 (1994)

    Google Scholar 

  8. Connolly, C., Fleiss, T.: A study of efficiency and accuracy in the transformation from RGB to CIELAB color space. IEEE Trans. Image Process. 6(7), 1046–1048 (1997)

    Article  Google Scholar 

  9. Contreras, R.C., Morandin Junior, O., Viana, M.S.: A new local search adaptive genetic algorithm for the pseudo-coloring problem. In: Tan, Y., Shi, Y., Tuba, M. (eds.) ICSI 2020. LNCS, vol. 12145, pp. 349–361. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-53956-6_31

    Chapter  Google Scholar 

  10. Dai, J., Zhou, S.: Computer-aided pseudocolor coding of gray images: complementary color-coding technique. In: Electronic Imaging and Multimedia Systems, vol. 2898, pp. 186–191. SPIE (1996)

    Google Scholar 

  11. Dmitruk, K., Denkowski, M., Mazur, M., Mikołajczak, P.: Sharpening filter for false color imaging of dual-energy x-ray scans. SIViP 11, 613–620 (2017)

    Article  Google Scholar 

  12. Mahyar, F., Cheung, V., Westland, S., Henry, P.: Investigation of complementary colour harmony in CIELAB colour space. In: Proceedings of the AIC Midterm Meeting, China (2007)

    Google Scholar 

  13. Radlak, K., Smolka, B.: Visualization enhancement of segmented images using genetic algorithm. In: 2014 International Conference on Multimedia Computing and Systems (ICMCS), pp. 391–396. IEEE (2014)

    Google Scholar 

  14. Reclusa, P., et al.: Improving extracellular vesicles visualization: from static to motion. Sci. Rep. 10(1), 6494 (2020)

    Google Scholar 

  15. Viana, M.S., Contreras, R.C., Junior, O.M.: A new genetic improvement operator based on frequency analysis for genetic algorithms applied to job shop scheduling problem. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2021. LNCS (LNAI), vol. 12854, pp. 434–450. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-87986-0_39

    Chapter  Google Scholar 

  16. Viana, M.S., Contreras, R.C., Morandin Junior, O.: A new frequency analysis operator for population improvement in genetic algorithms to solve the job shop scheduling problem. Sensors 22(12), 4561 (2022)

    Article  Google Scholar 

  17. Viana, M.S., Junior, O.M., Contreras, R.C.: An improved local search genetic algorithm with multi-crossover for job shop scheduling problem. In: Rutkowski, L., Scherer, R., Korytkowski, M., Pedrycz, W., Tadeusiewicz, R., Zurada, J.M. (eds.) ICAISC 2020. LNCS (LNAI), vol. 12415, pp. 464–479. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61401-0_43

    Chapter  Google Scholar 

  18. Viana, M.S., Morandin Junior, O., Contreras, R.C.: An improved local search genetic algorithm with a new mapped adaptive operator applied to pseudo-coloring problem. Symmetry 12(10), 1684 (2020)

    Article  Google Scholar 

  19. Viana, M.S., Morandin Junior, O., Contreras, R.C.: A modified genetic algorithm with local search strategies and multi-crossover operator for job shop scheduling problem. Sensors 20(18), 5440 (2020)

    Article  Google Scholar 

  20. Wang, Z., Pei, Y., Li, J.: A survey on search strategy of evolutionary multi-objective optimization algorithms. Appl. Sci. 13(7), 4643 (2023)

    Article  Google Scholar 

  21. Wolpert, D.H., Macready, W.G.: No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1(1), 67–82 (1997)

    Article  Google Scholar 

  22. Zamani, H., Nadimi-Shahraki, M.H., Gandomi, A.H.: CCSA: conscious neighborhood-based crow search algorithm for solving global optimization problems. Appl. Soft Comput. 85, 105583 (2019)

    Article  Google Scholar 

  23. Zeng, X., Tong, S., Lu, Y., Xu, L., Huang, Z.: Adaptive medical image deep color perception algorithm. IEEE Access 8, 56559–56571 (2020)

    Article  Google Scholar 

  24. Zheng, P., Zhang, J.: Quantitative nondestructive testing of wire rope based on pseudo-color image enhancement technology. Nondestr. Test. Eval. (2019)

    Google Scholar 

Download references

Acknowledgments

We gratefully acknowledge the grants provided by the Brazilian agencies: “Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)”; “National Council for Scientific and Technological Development (CNPq)” and “The São Paulo Research Foundation (FAPESP)”, respectively through the processes 303854/2022-7 (CNPq - RCG), 2021/12407-4 (FAPESP - RCG), 2022/05186-4 (FAPESP - RCC), 2019/21464-1 (FAPESP - RCC), 2023/06611-3 (FAPESP - MSV) and Finance Code 001 (CAPES - MSV).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Monique Simplicio Viana .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Simplicio Viana, M. et al. (2024). Massive Conscious Neighborhood-Based Crow Search Algorithm for the Pseudo-Coloring Problem. In: Tan, Y., Shi, Y. (eds) Advances in Swarm Intelligence. ICSI 2024. Lecture Notes in Computer Science, vol 14788. Springer, Singapore. https://doi.org/10.1007/978-981-97-7181-3_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-7181-3_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-7180-6

  • Online ISBN: 978-981-97-7181-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics