Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Identifying Rank-Happiness Maximizing Sets Under Group Fairness Constraints

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2024)

Abstract

The happiness or regret based query has been another important tool in multi-dimensional decision-making besides the top-k and skyline queries. To avoid the happiness ratio being perceived as “made up” numbers which are often confused by users, we merge the concept rank into happiness ratio and study the rank-happiness maximizing set problem (RHMS). Also, it is crucial for RHMS to fairly represent different groups of candidates without bias and discrimination. In this paper, we solve the rank-happiness maximizing set problem under group fairness constraints (FairRHMS) from a submodular perspective. By introducing the concept of rank-happiness ratio and modeling the group fairness constraint proportionally along with upper and lower bounds for each group, we convert the FairRHMS problem into a submodular maximization problem under matroid constraints. Further, a bi-criteria approximation algorithm with multiple rounds of greedy processes named BMGreedy is proposed to solve the problem. Experiments on real and synthetic datasets confirm the effectiveness and efficiency of our BMGreedy algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://archive.ics.uci.edu/ml/datasets/adult.

  2. 2.

    https://archive.ics.uci.edu/ml/datasets/statlog+(german+credit+data).

  3. 3.

    https://github.com/propublica/compas-analysis.

References

  1. Agarwal, P.K., Kumar, N., Sintos, S., Suri, S.: Efficient algorithms for k-regret minimizing sets. In: SEA, pp. 7:1–7:23 (2017)

    Google Scholar 

  2. Anari, N., Haghtalab, N., Naor, S., Pokutta, S., Singh, M., Torrico, A.: Structured robust submodular maximization: offline and online algorithms. In: AISTATS, pp. 3128–3137 (2019)

    Google Scholar 

  3. Asudeh, A., et al.: On finding rank regret representatives. TODS 47(3), 1–37 (2022)

    Article  MathSciNet  Google Scholar 

  4. Asudeh, A., Jagadish, H.V., Stoyanovich, J., Das, G.: Designing fair ranking schemes. In: SIGMOD, pp. 1259–1276 (2019)

    Google Scholar 

  5. Asudeh, A., Nazi, A., Zhang, N., Das, G.: Efficient computation of regret-ratio minimizing set: a compact maxima representative. In: SIGMOD, pp. 821–834 (2017)

    Google Scholar 

  6. Asudeh, A., Nazi, A., Zhang, N., Das, G., Jagadish, H.: RRR: rank-regret representative. In: SIGMOD, pp. 263–280 (2019)

    Google Scholar 

  7. Borzsony, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE, pp. 421–430 (2001)

    Google Scholar 

  8. Celis, E., Keswani, V., Straszak, D., Deshpande, A., Kathuria, T., Vishnoi, N.: Fair and diverse DPP-based data summarization. In: ICML, pp. 716–725 (2018)

    Google Scholar 

  9. Chester, S., Thomo, A., Srinivasan, V., Whitesides, S.: Computing k-regret minimizing sets. Proc. VLDB Endow. 7(5), 389–400 (2014)

    Article  Google Scholar 

  10. Dong, W., Islam, M.M., Schieber, B., Roy, S.B.: Rank aggregation with proportionate fairness. In: SIGMOD, pp. 262–275 (2022)

    Google Scholar 

  11. Fagin, R.: Combining fuzzy information from multiple systems. J. Comput. Syst. Sci. 58(1), 83–99 (1999)

    Article  MathSciNet  Google Scholar 

  12. Faulkner, T.A.K., Brackenbury, W., Lall, A.: k-regret queries with nonlinear utilities. Proc. VLDB Endow. 8, 2098–2109 (2015)

    Article  Google Scholar 

  13. Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for maximizing submodular set functions–ii. Math. Programm. Stud. 8, 73–87 (1978)

    Article  MathSciNet  Google Scholar 

  14. Fujito, T.: Approximation algorithms for submodular set cover with applications. IEICE Trans. Inf. Syst. 83, 480–487 (2000)

    Google Scholar 

  15. García-Soriano, D., Bonchi, F.: Maxmin-fair ranking: individual fairness under group-fairness constraints. In: KDD, pp. 436–446 (2021)

    Google Scholar 

  16. Halabi, M.E., Fusco, F., Norouzi-Fard, A., Tardos, J., Tarnawski, J.: Fairness in streaming submodular maximization over a matroid constraint. In: ICML, pp. 9150–9171 (2023)

    Google Scholar 

  17. Halabi, M.E., Mitrovic, S., Norouzi-Fard, A., Tardos, J., Tarnawski, J.: Fairness in streaming submodular maximization: algorithms and hardness. In: NeurIPS, pp. 13609–13622 (2020)

    Google Scholar 

  18. Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019)

    Google Scholar 

  19. Krause, A., Golovin, D.: Submodular function maximization. In: Tractability (2014)

    Google Scholar 

  20. Li, Y., et al.: Hyperbolic hypergraphs for sequential recommendation. In: CIKM, pp. 988–997 (2021)

    Google Scholar 

  21. Luenam, P., Chen, Y.P., Wong, R.C.W.: Approximating happiness maximizing set problems. ArXiv abs/2102.03578 (2021)

    Google Scholar 

  22. Mehrotra, A., Celis, L.E.: Mitigating bias in set selection with noisy protected attributes. In: FAccT, pp. 237–248 (2021)

    Google Scholar 

  23. Minoux, M.: Accelerated greedy algorithms for maximizing submodular set functions. In: Proceedings of IFIP Conference on Optimization Techniques, pp. 234–243 (1978)

    Google Scholar 

  24. Nanongkai, D., Sarma, A., Lall, A., Lipton, R., Xu, J.: Regret-minimizing representative databases. Proc. VLDB Endow. 3(1), 1114–1124 (2010)

    Article  Google Scholar 

  25. Nanongkai, D., Lall, A., Sarma, A.D., Makino, K.: Interactive regret minimization. In: SIGMOD, pp. 109–120 (2012)

    Google Scholar 

  26. Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions - I. Math. Program. 14(1), 265–294 (1978)

    Article  MathSciNet  Google Scholar 

  27. Nguyen, B.N.T., Pham, P.N., Le, V.V., Snášel, V.: Influence maximization under fairness budget distribution in online social networks. Mathematics 10(22), 4185 (2022)

    Article  Google Scholar 

  28. Peng, P., Wong, R.C.W.: Geometry approach for k-regret query. In: ICDE, pp. 772–783 (2014)

    Google Scholar 

  29. Pitoura, E., Stefanidis, K., Koutrika, G.: Fairness in rankings and recommendations: an overview. VLDB J. 31(3), 431–458 (2022)

    Article  Google Scholar 

  30. Qi, J., Zuo, F., Samet, H., Yao, J.C.: k-regret queries using multiplicative utility functions. TODS 43(2), 10:1–10:41 (2018)

    Google Scholar 

  31. Qiu, X., Zheng, J.: An efficient algorithm for computing k-average-regret minimizing sets in databases. In: WISA, pp. 404–412 (2018)

    Google Scholar 

  32. Qiu, X., Zheng, J., Dong, Q., Huang, X.: Speed-up algorithms for happiness-maximizing representative databases. In: APWebWAIM DS Workshop, pp. 321–335 (2018)

    Google Scholar 

  33. Singh, A., Joachims, T.: Fairness of exposure in rankings. In: KDD, pp. 2219–2228 (2018)

    Google Scholar 

  34. Sonboli, N., Eskandanian, F., Burke, R., Liu, W., Mobasher, B.: Opportunistic multi-aspect fairness through personalized re-ranking. In: UMAP, pp. 239–247 (2020)

    Google Scholar 

  35. Stoyanovich, J., Yang, K., Jagadish, H.V.: Online set selection with fairness and diversity constraints. In: EDBT, pp. 241–252 (2018)

    Google Scholar 

  36. Wang, Y., Fabbri, F., Mathioudakis, M.: Fair and representative subset selection from data streams. In: WWW, pp. 1340–1350 (2021)

    Google Scholar 

  37. Wang, Y., Li, Y., Wong, R.C.W., Tan, K.L.: A fully dynamic algorithm for k-regret minimizing sets. In: ICDE, pp. 1631–1642 (2021)

    Google Scholar 

  38. Xiao, X., Li, J.: Rank-regret minimization. In: ICDE, pp. 1848–1860 (2022)

    Google Scholar 

  39. Xie, M., Wong, R.C., Lall, A.: Strongly truthful interactive regret minimization. In: SIGMOD, pp. 281–298 (2019)

    Google Scholar 

  40. Xie, M., Wong, R.C.W., Lall, A.: An experimental survey of regret minimization query and variants: bridging the best worlds between top-k query and skyline query. VLDB J. 29, 147–175 (2020)

    Article  Google Scholar 

  41. Xie, M., Wong, R.C., Li, J., Long, C., Lall, A.: Efficient k-regret query algorithm with restriction-free bound for any dimensionality. In: SIGMOD, pp. 959–974 (2018)

    Google Scholar 

  42. Xie, M., Wong, R.C., Peng, P., Tsotras, V.J.: Being happy with the least: achieving \(\alpha \)-happiness with minimum number of tuples. In: ICDE, pp. 1009–1020 (2020)

    Google Scholar 

  43. Yang, Z., Zheng, J.: Online submodular maximization via adaptive thresholds. In: IJCAI (2024)

    Google Scholar 

  44. Zaniolo, C., Das, A., Gu, J., Li, Y., Li, M., Wang, J.: Developing big-data application as queries: an aggregate-based approach. IEEE Data Eng. Bull. 44(2), 3–13 (2021)

    Google Scholar 

  45. Zeighami, S., Wong, R.C.W.: Minimizing average regret ratio in database. In: SIGMOD, pp. 2265–2266 (2016)

    Google Scholar 

  46. Zeighami, S., Wong, R.C.W.: Finding average regret ratio minimizing set in database. In: ICDE, pp. 1722–1725 (2019)

    Google Scholar 

  47. Zheng, J., Chen, C.: Sorting-based interactive regret minimization. In: APWeb-WAIM, pp. 473–490 (2020)

    Google Scholar 

  48. Zheng, J., Dong, Q., Wang, X., Zhang, Y., Ma, W., Ma, Y.: Efficient processing of k-regret minimization queries with theoretical guarantees. Inf. Sci. 586, 99–118 (2022)

    Article  Google Scholar 

  49. Zheng, J., Ma, Y., Ma, W., Wang, Y., Wang, X.: Happiness maximizing sets under group fairness constraints. Proc. VLDB Endow. 16(2), 291–303 (2022)

    Article  Google Scholar 

  50. Zheng, J., et al.: Hybrid regret minimization: a submodular approach. IEEE Trans. Knowl. Data Eng. 36(7), 3151–3165 (2024)

    Article  Google Scholar 

  51. Zheng, J., Wang, Y., Wang, X., Ma, W.: Continuous k-regret minimization queries: a dynamic coreset approach. IEEE Trans. Knowl. Data Eng. 35(6), 5680–5694 (2023)

    Article  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the Fundamental Research Funds for the Central Universities under grant NS2024056 and the National Natural Science Foundation of China under grant U1733112.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiping Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhu, K., Zheng, J., Yang, Z., Dong, J. (2024). Identifying Rank-Happiness Maximizing Sets Under Group Fairness Constraints. In: Zhang, W., Tung, A., Zheng, Z., Yang, Z., Wang, X., Guo, H. (eds) Web and Big Data. APWeb-WAIM 2024. Lecture Notes in Computer Science, vol 14963. Springer, Singapore. https://doi.org/10.1007/978-981-97-7238-4_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-7238-4_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-7237-7

  • Online ISBN: 978-981-97-7238-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics