Abstract
The happiness or regret based query has been another important tool in multi-dimensional decision-making besides the top-k and skyline queries. To avoid the happiness ratio being perceived as “made up” numbers which are often confused by users, we merge the concept rank into happiness ratio and study the rank-happiness maximizing set problem (RHMS). Also, it is crucial for RHMS to fairly represent different groups of candidates without bias and discrimination. In this paper, we solve the rank-happiness maximizing set problem under group fairness constraints (FairRHMS) from a submodular perspective. By introducing the concept of rank-happiness ratio and modeling the group fairness constraint proportionally along with upper and lower bounds for each group, we convert the FairRHMS problem into a submodular maximization problem under matroid constraints. Further, a bi-criteria approximation algorithm with multiple rounds of greedy processes named BMGreedy is proposed to solve the problem. Experiments on real and synthetic datasets confirm the effectiveness and efficiency of our BMGreedy algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Agarwal, P.K., Kumar, N., Sintos, S., Suri, S.: Efficient algorithms for k-regret minimizing sets. In: SEA, pp. 7:1–7:23 (2017)
Anari, N., Haghtalab, N., Naor, S., Pokutta, S., Singh, M., Torrico, A.: Structured robust submodular maximization: offline and online algorithms. In: AISTATS, pp. 3128–3137 (2019)
Asudeh, A., et al.: On finding rank regret representatives. TODS 47(3), 1–37 (2022)
Asudeh, A., Jagadish, H.V., Stoyanovich, J., Das, G.: Designing fair ranking schemes. In: SIGMOD, pp. 1259–1276 (2019)
Asudeh, A., Nazi, A., Zhang, N., Das, G.: Efficient computation of regret-ratio minimizing set: a compact maxima representative. In: SIGMOD, pp. 821–834 (2017)
Asudeh, A., Nazi, A., Zhang, N., Das, G., Jagadish, H.: RRR: rank-regret representative. In: SIGMOD, pp. 263–280 (2019)
Borzsony, S., Kossmann, D., Stocker, K.: The skyline operator. In: ICDE, pp. 421–430 (2001)
Celis, E., Keswani, V., Straszak, D., Deshpande, A., Kathuria, T., Vishnoi, N.: Fair and diverse DPP-based data summarization. In: ICML, pp. 716–725 (2018)
Chester, S., Thomo, A., Srinivasan, V., Whitesides, S.: Computing k-regret minimizing sets. Proc. VLDB Endow. 7(5), 389–400 (2014)
Dong, W., Islam, M.M., Schieber, B., Roy, S.B.: Rank aggregation with proportionate fairness. In: SIGMOD, pp. 262–275 (2022)
Fagin, R.: Combining fuzzy information from multiple systems. J. Comput. Syst. Sci. 58(1), 83–99 (1999)
Faulkner, T.A.K., Brackenbury, W., Lall, A.: k-regret queries with nonlinear utilities. Proc. VLDB Endow. 8, 2098–2109 (2015)
Fisher, M.L., Nemhauser, G.L., Wolsey, L.A.: An analysis of approximations for maximizing submodular set functions–ii. Math. Programm. Stud. 8, 73–87 (1978)
Fujito, T.: Approximation algorithms for submodular set cover with applications. IEICE Trans. Inf. Syst. 83, 480–487 (2000)
García-Soriano, D., Bonchi, F.: Maxmin-fair ranking: individual fairness under group-fairness constraints. In: KDD, pp. 436–446 (2021)
Halabi, M.E., Fusco, F., Norouzi-Fard, A., Tardos, J., Tarnawski, J.: Fairness in streaming submodular maximization over a matroid constraint. In: ICML, pp. 9150–9171 (2023)
Halabi, M.E., Mitrovic, S., Norouzi-Fard, A., Tardos, J., Tarnawski, J.: Fairness in streaming submodular maximization: algorithms and hardness. In: NeurIPS, pp. 13609–13622 (2020)
Kleindessner, M., Awasthi, P., Morgenstern, J.: Fair k-center clustering for data summarization. In: ICML, pp. 3448–3457 (2019)
Krause, A., Golovin, D.: Submodular function maximization. In: Tractability (2014)
Li, Y., et al.: Hyperbolic hypergraphs for sequential recommendation. In: CIKM, pp. 988–997 (2021)
Luenam, P., Chen, Y.P., Wong, R.C.W.: Approximating happiness maximizing set problems. ArXiv abs/2102.03578 (2021)
Mehrotra, A., Celis, L.E.: Mitigating bias in set selection with noisy protected attributes. In: FAccT, pp. 237–248 (2021)
Minoux, M.: Accelerated greedy algorithms for maximizing submodular set functions. In: Proceedings of IFIP Conference on Optimization Techniques, pp. 234–243 (1978)
Nanongkai, D., Sarma, A., Lall, A., Lipton, R., Xu, J.: Regret-minimizing representative databases. Proc. VLDB Endow. 3(1), 1114–1124 (2010)
Nanongkai, D., Lall, A., Sarma, A.D., Makino, K.: Interactive regret minimization. In: SIGMOD, pp. 109–120 (2012)
Nemhauser, G.L., Wolsey, L.A., Fisher, M.L.: An analysis of approximations for maximizing submodular set functions - I. Math. Program. 14(1), 265–294 (1978)
Nguyen, B.N.T., Pham, P.N., Le, V.V., Snášel, V.: Influence maximization under fairness budget distribution in online social networks. Mathematics 10(22), 4185 (2022)
Peng, P., Wong, R.C.W.: Geometry approach for k-regret query. In: ICDE, pp. 772–783 (2014)
Pitoura, E., Stefanidis, K., Koutrika, G.: Fairness in rankings and recommendations: an overview. VLDB J. 31(3), 431–458 (2022)
Qi, J., Zuo, F., Samet, H., Yao, J.C.: k-regret queries using multiplicative utility functions. TODS 43(2), 10:1–10:41 (2018)
Qiu, X., Zheng, J.: An efficient algorithm for computing k-average-regret minimizing sets in databases. In: WISA, pp. 404–412 (2018)
Qiu, X., Zheng, J., Dong, Q., Huang, X.: Speed-up algorithms for happiness-maximizing representative databases. In: APWebWAIM DS Workshop, pp. 321–335 (2018)
Singh, A., Joachims, T.: Fairness of exposure in rankings. In: KDD, pp. 2219–2228 (2018)
Sonboli, N., Eskandanian, F., Burke, R., Liu, W., Mobasher, B.: Opportunistic multi-aspect fairness through personalized re-ranking. In: UMAP, pp. 239–247 (2020)
Stoyanovich, J., Yang, K., Jagadish, H.V.: Online set selection with fairness and diversity constraints. In: EDBT, pp. 241–252 (2018)
Wang, Y., Fabbri, F., Mathioudakis, M.: Fair and representative subset selection from data streams. In: WWW, pp. 1340–1350 (2021)
Wang, Y., Li, Y., Wong, R.C.W., Tan, K.L.: A fully dynamic algorithm for k-regret minimizing sets. In: ICDE, pp. 1631–1642 (2021)
Xiao, X., Li, J.: Rank-regret minimization. In: ICDE, pp. 1848–1860 (2022)
Xie, M., Wong, R.C., Lall, A.: Strongly truthful interactive regret minimization. In: SIGMOD, pp. 281–298 (2019)
Xie, M., Wong, R.C.W., Lall, A.: An experimental survey of regret minimization query and variants: bridging the best worlds between top-k query and skyline query. VLDB J. 29, 147–175 (2020)
Xie, M., Wong, R.C., Li, J., Long, C., Lall, A.: Efficient k-regret query algorithm with restriction-free bound for any dimensionality. In: SIGMOD, pp. 959–974 (2018)
Xie, M., Wong, R.C., Peng, P., Tsotras, V.J.: Being happy with the least: achieving \(\alpha \)-happiness with minimum number of tuples. In: ICDE, pp. 1009–1020 (2020)
Yang, Z., Zheng, J.: Online submodular maximization via adaptive thresholds. In: IJCAI (2024)
Zaniolo, C., Das, A., Gu, J., Li, Y., Li, M., Wang, J.: Developing big-data application as queries: an aggregate-based approach. IEEE Data Eng. Bull. 44(2), 3–13 (2021)
Zeighami, S., Wong, R.C.W.: Minimizing average regret ratio in database. In: SIGMOD, pp. 2265–2266 (2016)
Zeighami, S., Wong, R.C.W.: Finding average regret ratio minimizing set in database. In: ICDE, pp. 1722–1725 (2019)
Zheng, J., Chen, C.: Sorting-based interactive regret minimization. In: APWeb-WAIM, pp. 473–490 (2020)
Zheng, J., Dong, Q., Wang, X., Zhang, Y., Ma, W., Ma, Y.: Efficient processing of k-regret minimization queries with theoretical guarantees. Inf. Sci. 586, 99–118 (2022)
Zheng, J., Ma, Y., Ma, W., Wang, Y., Wang, X.: Happiness maximizing sets under group fairness constraints. Proc. VLDB Endow. 16(2), 291–303 (2022)
Zheng, J., et al.: Hybrid regret minimization: a submodular approach. IEEE Trans. Knowl. Data Eng. 36(7), 3151–3165 (2024)
Zheng, J., Wang, Y., Wang, X., Ma, W.: Continuous k-regret minimization queries: a dynamic coreset approach. IEEE Trans. Knowl. Data Eng. 35(6), 5680–5694 (2023)
Acknowledgments
This work is partially supported by the Fundamental Research Funds for the Central Universities under grant NS2024056 and the National Natural Science Foundation of China under grant U1733112.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Zhu, K., Zheng, J., Yang, Z., Dong, J. (2024). Identifying Rank-Happiness Maximizing Sets Under Group Fairness Constraints. In: Zhang, W., Tung, A., Zheng, Z., Yang, Z., Wang, X., Guo, H. (eds) Web and Big Data. APWeb-WAIM 2024. Lecture Notes in Computer Science, vol 14963. Springer, Singapore. https://doi.org/10.1007/978-981-97-7238-4_21
Download citation
DOI: https://doi.org/10.1007/978-981-97-7238-4_21
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-7237-7
Online ISBN: 978-981-97-7238-4
eBook Packages: Computer ScienceComputer Science (R0)