Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Self Supervised Contrastive Learning Combining Equivariance and Invariance

  • Conference paper
  • First Online:
Web and Big Data (APWeb-WAIM 2024)

Abstract

Current self-supervised representation learning methods are mainly based on contrastive learning and proxy tasks. These methods acquire semantically rich features by contrasting samples with invariant transformations (positive pairs) against other samples (negative pairs), and simply discard transformations that degrade performance when used as invariances. However, using only invariant transformations often leads to an over-reliance on invariant transformations, which affects the generalisation ability and robustness of the model, while the large number of negative sample pairs in contrast learning imposes a huge computational overhead. In order to address these issues, we reduce the dependence on invariant transformations by transforming the discarded invariant transformations into equivariant transformations. In contrast learning, we reduce the computational overhead by using only positive pairs to obtain semantically rich features. Specifically, we enhance feature semantic quality by encouraging certain transformations to exhibit non-trivial equivariance on samples of invariant transformations in the form of a proxy task, while preserving original transformation invariance. The model learns the invariant transformations further by learning equivariance at the same time, and our approach can improve the accuracy of the model without changing the structure of the original model. Experimental results show that significant improvements are obtained on several benchmark datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Agrawal, P., Carreira, J., Malik, J.: Learning to see by moving. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 37–45 (2015)

    Google Scholar 

  2. Arazo, E., Ortego, D., Albert, P., O’Connor, N.E., McGuinness, K.: Pseudo-labeling and confirmation bias in deep semi-supervised learning. In: 2020 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. IEEE (2020)

    Google Scholar 

  3. Bachman, P., Hjelm, R.D., Buchwalter, W.: Learning representations by maximizing mutual information across views. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  4. Bronstein, M.M., Bruna, J., Cohen, T., Veličković, P.: Geometric deep learning: grids, groups, graphs, geodesics, and gauges. arXiv preprint arXiv:2104.13478 (2021)

  5. Caron, M., et al.: Emerging properties in self-supervised vision transformers. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 9650–9660 (2021)

    Google Scholar 

  6. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)

    Google Scholar 

  7. Chen, X., Fan, H., Girshick, R., He, K.: Improved baselines with momentum contrastive learning. arxiv 2020. arXiv preprint arXiv:2003.04297 (2003)

  8. Chen, X., He, K.: Exploring simple siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15750–15758 (2021)

    Google Scholar 

  9. Coates, A., Ng, A., Lee, H.: An analysis of single-layer networks in unsupervised feature learning. In: Proceedings of the Fourteenth International Conference on Artificial Intelligence and Statistics, pp. 215–223. JMLR Workshop and Conference Proceedings (2011)

    Google Scholar 

  10. Cohen, T., Welling, M.: Group equivariant convolutional networks. In: International Conference on Machine Learning, pp. 2990–2999. PMLR (2016)

    Google Scholar 

  11. Da, K.: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  12. Dangovski, R., et al.: Equivariant contrastive learning. arXiv preprint arXiv:2111.00899 (2021)

  13. Ermolov, A., Siarohin, A., Sangineto, E., Sebe, N.: Whitening for self-supervised representation learning. In: International Conference on Machine Learning, pp. 3015–3024. PMLR (2021)

    Google Scholar 

  14. Fetterman, A., Albrecht, J.: Understanding self-supervised and contrastive learning with bootstrap your own latent (BYOL). Untitled AI, August (2020)

    Google Scholar 

  15. Gidaris, S., Bursuc, A., Komodakis, N., Pérez, P., Cord, M.: Boosting few-shot visual learning with self-supervision. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 8059–8068 (2019)

    Google Scholar 

  16. Gidaris, S., Singh, P., Komodakis, N.: Unsupervised representation learning by predicting image rotations. arXiv preprint arXiv:1803.07728 (2018)

  17. Grill, J.B., et al.: Bootstrap your own latent-a new approach to self-supervised learning. Adv. Neural. Inf. Process. Syst. 33, 21271–21284 (2020)

    Google Scholar 

  18. Guo, G., Wang, H., Bell, D., Bi, Y., Greer, K.: KNN model-based approach in classification. In: Meersman, R., Tari, Z., Schmidt, D.C. (eds.) OTM 2003. LNCS, vol. 2888, pp. 986–996. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39964-3_62

    Chapter  Google Scholar 

  19. Guo, H., Ba, Y., Hu, J., Si, L., Qiang, W., Shi, L.: Self-supervised representation learning with meta comprehensive regularization. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, pp. 1959–1967 (2024)

    Google Scholar 

  20. He, K., Fan, H., Wu, Y., Xie, S., Girshick, R.: Momentum contrast for unsupervised visual representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 9729–9738 (2020)

    Google Scholar 

  21. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: International Conference on Machine Learning, pp. 448–456. PMLR (2015)

    Google Scholar 

  22. Jayaraman, D., Grauman, K.: Learning image representations tied to ego-motion. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 1413–1421 (2015)

    Google Scholar 

  23. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  24. Le, Y., Yang, X.: Tiny imagenet visual recognition challenge. CS 231N 7(7), 3 (2015)

    Google Scholar 

  25. Lenc, K., Vedaldi, A.: Understanding image representations by measuring their equivariance and equivalence. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 991–999 (2015)

    Google Scholar 

  26. Loh, C., Christensen, T., Dangovski, R., Kim, S., Soljačić, M.: Surrogate-and invariance-boosted contrastive learning for data-scarce applications in science. Nat. Commun. 13(1), 4223 (2022)

    Article  Google Scholar 

  27. Metzger, S., Srinivas, A., Darrell, T., Keutzer, K.: Evaluating self-supervised pretraining without using labels. arXiv preprint arXiv:2009.07724 (2020)

  28. Peng, X., Wang, K., Zhu, Z., Wang, M., You, Y.: Crafting better contrastive views for siamese representation learning. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16031–16040 (2022)

    Google Scholar 

  29. Wu, Z., Xiong, Y., Yu, S.X., Lin, D.: Unsupervised feature learning via non-parametric instance discrimination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3733–3742 (2018)

    Google Scholar 

  30. Zbontar, J., Jing, L., Misra, I., LeCun, Y., Deny, S.: Barlow twins: self-supervised learning via redundancy reduction. In: International Conference on Machine Learning, pp. 12310–12320. PMLR (2021)

    Google Scholar 

  31. Zhang, H., Berg, A.C., Maire, M., Malik, J.: SVM-KNN: discriminative nearest neighbor classification for visual category recognition. In: 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR 2006), vol. 2, pp. 2126–2136. IEEE (2006)

    Google Scholar 

  32. Zhang, L.: Equivariance and invariance for robust unsupervised and semi-supervised learning (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Yang or Hu Jin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yang, L., Yang, Y., Jin, H. (2024). Self Supervised Contrastive Learning Combining Equivariance and Invariance. In: Zhang, W., Tung, A., Zheng, Z., Yang, Z., Wang, X., Guo, H. (eds) Web and Big Data. APWeb-WAIM 2024. Lecture Notes in Computer Science, vol 14965. Springer, Singapore. https://doi.org/10.1007/978-981-97-7244-5_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-7244-5_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-7243-8

  • Online ISBN: 978-981-97-7244-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics