Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

MedPrompt: Cross-modal Prompting for Multi-task Medical Image Translation

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15044))

Included in the following conference series:

  • 224 Accesses

Abstract

The ability to translate medical images across different modalities is crucial for synthesizing missing data and aiding in clinical diagnosis. However, existing learning-based techniques have limitations when it comes to capturing cross-modal and global features. These techniques are often tailored to specific pairs of modalities, limiting their practical utility, especially considering the variability of missing modalities in different cases. In this study, we introduce MedPrompt, a multi-task framework designed to efficiently translate diverse modalities. Our framework incorporates the Self-adaptive Prompt Block, which dynamically guides the translation network to handle different modalities effectively. To encode the cross-modal prompt efficiently, we introduce the Prompt Extraction Block and the Prompt Fusion Block. Additionally, we leverage the Transformer model to enhance the extraction of global features across various modalities. Through extensive experimentation involving five datasets and four pairs of modalities, we demonstrate that our proposed model achieves state-of-the-art visual quality and exhibits excellent generalization capability. The results highlight the effectiveness and versatility of MedPrompt in addressing the challenges associated with cross-modal medical image translation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brody, H.: Medical imaging. Nature 502(7473), S81–S81 (2013)

    Article  Google Scholar 

  2. Wang, S., Wang, H., Cheung, A.C., Shen, Y., Gan, M.: Ensemble of 3d densely connected convolutional network for diagnosis of mild cognitive impairment and alzheimer’s disease. In: Deep Learning Applications, pp. 53–73 (2020)

    Google Scholar 

  3. Wang, S.Q., He, J.H.: Variational iteration method for a nonlinear reaction-diffusion process. Int. J. Chem. React. Eng. 6(1) (2008)

    Google Scholar 

  4. Zhou, T., Chen, X., Shen, Y., Nieuwoudt, M., Pun, C.M., Wang, S.: Generative ai enables eeg data augmentation for alzheimer’s disease detection via diffusion model. In: ISPCE-ASIA, pp. 1–6 (2023)

    Google Scholar 

  5. Gong, C., Jing, C., Chen, X., Pun, C.M., Huang, G., Saha, A., Nieuwoudt, M., Li, H.X., Hu, Y., Wang, S.: Generative ai for brain image computing and brain network computing: A review. Front. Neurosci. 17, 1203104 (2023)

    Article  Google Scholar 

  6. Lei, B., Zhu, Y., Yu, S., Hu, H., Xu, Y., Yue, G., Wang, T., Zhao, C., Chen, S., Yang, P., et al.: Multi-scale enhanced graph convolutional network for mild cognitive impairment detection. Pattern Recogn. 134, 109106 (2023)

    Article  Google Scholar 

  7. Huang, G., Chen, X., Shen, Y., Wang, S.: Mr image super-resolution using wavelet diffusion for predicting alzheimer’s disease. In: BI, pp. 146–157 (2023)

    Google Scholar 

  8. Chen, X., Lei, B., Pun, C.M., Wang, S.: Brain diffuser: An end-to-end brain image to brain network pipeline. In: PRCV, pp. 16–26 (2023)

    Google Scholar 

  9. You, S., Lei, B., Wang, S., Chui, C.K., Cheung, A.C., Liu, Y., Gan, M., Wu, G., Shen, Y.: Fine perceptive gans for brain mr image super-resolution in wavelet domain. In: IEEE Transactions on Neural Networks and Learning Systems (2022)

    Google Scholar 

  10. Hu, B., Zhan, C., Tang, B., Wang, B., Lei, B., Wang, S.Q.: 3-d brain reconstruction by hierarchical shape-perception network from a single incomplete image. In: IEEE Transactions on Neural Networks and Learning Systems (2023)

    Google Scholar 

  11. Wang, S.Q., Li, H.X.: Bayesian inference based modelling for gene transcriptional dynamics by integrating multiple source of knowledge. BMC Syst. Biol. 6(1), 1–13 (2012)

    Article  MathSciNet  Google Scholar 

  12. Lei, B., Zhang, Y., Liu, D., Xu, Y., Yue, G., Cao, J., Hu, H., Yu, S., Yang, P., Wang, T., et al.: Longitudinal study of early mild cognitive impairment via similarity-constrained group learning and self-attention based sbi-lstm. Knowl.-Based Syst. 254, 109466 (2022)

    Google Scholar 

  13. Huang, Y., Shao, L., Frangi, A.F.: Cross-modality image synthesis via weakly coupled and geometry co-regularized joint dictionary learning. IEEE Trans. Med. Imaging 37(3), 815–827 (2017)

    Article  Google Scholar 

  14. Dong, Y., Chen, X., Shen, Y., Ng, M.K.P., Qian, T., Wang, S.: Multi-modal mood reader: Pre-trained model empowers cross-subject emotion recognition. ArXiv (2024)

    Google Scholar 

  15. Zhou, Z., Huo, Y., Huang, G., Zeng, A., Chen, X., Huang, L., Li, Z.: Qean: quaternion-enhanced attention network for visual dance generation. In: The Visual Computer, pp. 1–13 (2024)

    Google Scholar 

  16. Nie, D., Trullo, R., Lian, J., Petitjean, C., Ruan, S., Wang, Q., Shen, D.: Medical image synthesis with context-aware generative adversarial networks. In: MICCAI, pp. 417–425. Springer (2017)

    Google Scholar 

  17. Dar, S.U., Yurt, M., Karacan, L., Erdem, A., Erdem, E., Cukur, T.: Image synthesis in multi-contrast mri with conditional generative adversarial networks. IEEE Trans. Med. Imaging 38(10), 2375–2388 (2019)

    Article  Google Scholar 

  18. Dalmaz, O., Yurt, M., Çukur, T.: Resvit: Residual vision transformers for multimodal medical image synthesis. IEEE Trans. Med. Imaging 41(10), 2598–2614 (2022)

    Article  Google Scholar 

  19. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., Houlsby, N.: An image is worth 16x16 words. In: Transformers for Image Recognition at Scale. ICLR (2021)

    Google Scholar 

  20. Jia, M., Tang, L., Chen, B.C., Cardie, C., Belongie, S., Hariharan, B., Lim, S.N.: Visual prompt tuning. In: ECCV, pp. 709–727. Springer (2022)

    Google Scholar 

  21. Gao, F., Wu, T., Chu, X., Yoon, H., Xu, Y., Patel, B.: Deep residual inception encoder-decoder network for medical imaging synthesis. IEEE J. Biomed. Health Inform. 24(1), 39–49 (2019)

    Article  Google Scholar 

  22. Hu, S., Lei, B., Wang, S., Wang, Y., Feng, Z., Shen, Y.: Bidirectional mapping generative adversarial networks for brain mr to pet synthesis. IEEE Trans. Med. Imaging 41(1), 145–157 (2021)

    Article  Google Scholar 

  23. Houlsby, N., Giurgiu, A., Jastrzebski, S., Morrone, B., De Laroussilhe, Q., Gesmundo, A., Attariyan, M., Gelly, S.: Parameter-efficient transfer learning for nlp. In: International Conference on Machine Learning, pp. 2790–2799. PMLR (2019)

    Google Scholar 

  24. Victor, S., Albert, W., Colin, R., Stephen, B., Lintang, S., Zaid, A., Antoine, C., Arnaud, S., Arun, R., Manan, D., et al.: Multitask prompted training enables zero-shot task generalization. In: ICLR (2022)

    Google Scholar 

  25. Brown, T., Mann, B., Ryder, N., Subbiah, M., Kaplan, J.D., Dhariwal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.: Language models are few-shot learners. NeurIPS 33, 1877–1901 (2020)

    Google Scholar 

  26. Li, X.L., Liang, P.: Prefix-tuning: Optimizing continuous prompts for generation. Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers) (2021)

    Google Scholar 

  27. Khattak, M.U., Rasheed, H., Maaz, M., Khan, S., Khan, F.S.: Maple: Multi-modal prompt learning. In: CVPR, pp. 19113–19122 (2023)

    Google Scholar 

  28. Sohn, K., Chang, H., Lezama, J., Polania, L., Zhang, H., Hao, Y., Essa, I., Jiang, L.: Visual prompt tuning for generative transfer learning. In: CVPR, pp. 19840–19851 (2023)

    Google Scholar 

  29. Chen, X., Cun, X., Pun, C.M., Wang, S.: Shadocnet: Learning spatial-aware tokens in transformer for document shadow removal. In: ICASSP, pp. 1–5 (2023)

    Google Scholar 

  30. Luo, S., Chen, X., Chen, W., Li, Z., Wang, S., Pun, C.M.: Devignet: High-resolution vignetting removal via a dual aggregated fusion transformer with adaptive channel expansion. In: AAAI, pp. 4000–4008 (2024)

    Google Scholar 

  31. Li, Z., Chen, X., Guo, S., Wang, S., Pun, C.M.: Wavenhancer: Unifying wavelet and transformer for image enhancement. J. Comput. Sci. Technol. 39(2), 336–345 (2024)

    Article  Google Scholar 

  32. Zamir, S.W., Arora, A., Khan, S., Hayat, M., Khan, F.S., Yang, M.H.: Restormer: Efficient transformer for high-resolution image restoration. In: CVPR, pp. 5728–5739 (2022)

    Google Scholar 

  33. Li, Z., Chen, X., Pun, C.M., Cun, X.: High-resolution document shadow removal via a large-scale real-world dataset and a frequency-aware shadow erasing net. In: ICCV, pp. 12449–12458 (2023)

    Google Scholar 

  34. Jiang, Y., Chen, X., Pun, C.M., Wang, S., Feng, W.: Mfdnet: Multi-frequency deflare network for efficient nighttime flare removal. ArXiv (2024)

    Google Scholar 

  35. Zuo, Q., Lei, B., Wang, S., Liu, Y., Wang, B., Shen, Y.: A prior guided adversarial representation learning and hypergraph perceptual network for predicting abnormal connections of alzheimer’s disease. arXiv preprint arXiv:2110.09302 (2021)

  36. Hu, S., Shen, Y., Wang, S., Lei, B.: Brain mr to pet synthesis via bidirectional generative adversarial network. In: MICCAI, pp. 698–707. Springer (2020)

    Google Scholar 

  37. Thummerer, A., van der Bijl, E., Galapon Jr, A., Verhoeff, J.J., Langendijk, J.A., Both, S., van den Berg, C.N.A., Maspero, M.: Synthrad2023 grand challenge dataset: Generating synthetic ct for radiotherapy. In: Medical Physics (2023)

    Google Scholar 

  38. Menze, B.H., Jakab, A., Bauer, S., Kalpathy-Cramer, J., Farahani, K., Kirby, J., Burren, Y., Porz, N., Slotboom, J., Wiest, R., et al.: The multimodal brain tumor image segmentation benchmark (brats). IEEE Trans. Med. Imaging 34(10), 1993–2024 (2014)

    Article  Google Scholar 

  39. Biobank, U.: Protocol for a large-scale prospective epidemiological resource (2007)

    Google Scholar 

Download references

Acknowledgement

This work was supported in part by the National Natural Science Foundations of China under Grant 62172403 and 12326614, the Distinguished Young Scholars Fund of Guangdong under Grant 2021B1515020019, the Excellent Young Scholars of Shenzhen under Grant RCYX20200714114641211, in part by the Science and Technology Development Fund, Macau SAR, under Grant 0141/2023/RIA2 and 0193/2023/RIA3. This research has been conducted using the UK Biobank Resource under Application Number No.75310. This work was performed at SICC which is supported by SKL-IOTSC, University of Macau.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuhang Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, X., Luo, S., Pun, CM., Wang, S. (2025). MedPrompt: Cross-modal Prompting for Multi-task Medical Image Translation. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15044. Springer, Singapore. https://doi.org/10.1007/978-981-97-8496-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8496-7_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8495-0

  • Online ISBN: 978-981-97-8496-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics