Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Foreground-Background Partitioning and Feature Fusion for Weakly Supervised Fine-Grained Image Recognition

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15033))

Included in the following conference series:

Abstract

Fine-grained image recognition (FGIR) aims to distinguish visual objects belonging to different subclasses within the same category. Existing methods mainly focus on identifying discriminative regions and extracting the most prominent features. However, this approach leads to scale imbalance between the foreground and background of an image. And it tends to focus on extracting features from salient foreground regions while neglecting valuable information present in the background. To address these two challenges, we propose a weakly supervised foreground-background partitioning and feature fusion framework. Specifically, a foreground-background image partition module is employed to separate the foreground and background regions to resolve the scale imbalance in image. We incorporate a feature similarity calculation module to weigh the foreground and background features. To leverage the background information while capturing discriminative regions, we introduce a selective mask feature module. Comprehensive experiments on four popular and competitive datasets demonstrated the superiority of the proposed method in comparison with the state-of-the-art methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sun, G., Cholakkal, H., Khan, S., Khan, F., Shao, L.: Fine-grained recognition: accounting for subtle differences between similar classes. In: Proceedings of the AAAI conference on Artificial Intelligence, vol. 34, pp. 12047–12054 (2020)

    Google Scholar 

  2. He, J., Chen, J.N., Liu, S., Kortylewski, A., Yang, C., Bai, Y., Wang, C.: Transfg: atransformer architecture for fine-grained recognition. In: Proceedings of the AAAI conference on Artificial Intelligence, vol. 36, pp. 852–860 (2022)

    Google Scholar 

  3. Oksuz, K., Cam, B.C., Kalkan, S., Akbas, E.: Imbalance problems in object detection: a review. arXiv preprint arXiv:1909.00169 (2019)

  4. Wu, Q., Miao, S., Chai, Z., Guo, G.: Fine-grained image classification with global information and adaptive compensation loss. IEEE Signal Process. Lett. 29, 36–40 (2021)

    Article  Google Scholar 

  5. Zhou, J., Li, J., Wang, C., Wu, H., Zhao, C., Wang, Q.: A vegetable disease recognition model for complex background based on region proposal and progressive learning. Comput. Electron. Agric. 184, 106101 (2021)

    Article  Google Scholar 

  6. Dosovitskiy, A., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  7. Wang, J., Yu, X., Gao, Y.: Feature fusion vision transformer for fine-grained visual categorization. arXiv preprint arXiv:2107.02341 (2021)

  8. Paul, S., Bhattacharyya, A., Mollah, A.F., Basu, S., Nasipuri, M.: Hand segmentation from complex background for gesture recognition. In: Proceedings of IEM Graph 2018 on Emerging Technology in Modelling and Graphics, pp. 775–782 (2020)

    Google Scholar 

  9. Fang, W., Ding, Y., Zhang, F., Sheng, V.S.: DOG: a new background removal for object recognition from images. Neurocomputing 361, 85–91 (2019)

    Article  Google Scholar 

  10. Chou, P.Y., Kao, Y.Y., Lin, C.H.: Fine-grained visual classification with high-temperature refinement and background suppression. arXiv preprint arXiv:2303.06442 (2023)

  11. Chen, G., et al.: A survey of the four pillars for small object detection: multiscale representation, contextual information, super-resolution, and region proposal. IEEE Trans. Syst., Man, Cybern.: Syst. 52(2), 936–953 (2020)

    Article  Google Scholar 

  12. Aminu, M., Ahmad, N.A.: New variants of global-local partial least squares discriminant analysis for appearance-based face recognition. IEEE Access 8, 166703–166720 (2020)

    Article  Google Scholar 

  13. Yu, D., Fang, Z., Jiang, Y.X.: Foreground feature enhancement and peak background suppression for fine-grained visual classification. In: Proceedings of the International conference on Multimedia Modeling, pp. 134–146 (2024)

    Google Scholar 

  14. Zhang, F., Li, M., Zhai, G., Liu, Y.: Multi-branch and multi-scale attention learning for fine-grained visual categorization. In: Proceedings of the MultiMedia Modeling: 27th International conference on MMM 2021, Prague, Czech Republic, pp. 134–146 (2021)

    Google Scholar 

  15. Zhang, X., Wei, Y., Feng, J., Yang, Y., Huang, T.S.: Adversarial complementary learning for weakly supervised object localization. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 1325–1334 (2018)

    Google Scholar 

  16. Wah, C., Branson, S., Welinder, P., Perona, P. Belongie, S.: The caltech-ucsd birds-200-2011 dataset (2011)

    Google Scholar 

  17. Van Horn, G., et al.: Building a bird recognition app and large scale dataset with citizen scientists: the fine print in fine-grained dataset collection. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 595–604 (2015)

    Google Scholar 

  18. Maji, S., Rahtu, E., Kannala, J., Blaschko, M. Vedaldi, A.: Fine-grained visual classification of aircraft. arXiv preprint arXiv:1306.5151 (2013)

  19. Krause, J., Stark, M., Deng, J., Fei-Fei, L.: 3d object representations for fine-grained categorization. In: Proceedings of the IEEE International Conference on Computer Vision Workshops, pp. 554–561 (2013)

    Google Scholar 

  20. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  21. Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., Guo, B.: Swin transformer: hierarchical vision transformer using shifted windows. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 10012–10022 (2021)

    Google Scholar 

  22. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255 (2009)

    Google Scholar 

  23. Loshchilov, I., Hutter, F.: Sgdr: stochastic gradient descent with warm restarts. arXiv preprint arXiv:1608.03983 (2016)

  24. Müller, R., Kornblith, S., Hinton, G.E.: When does label smoothing help?. Adv. Neural Inf. Process. Syst. 32 (2019)

    Google Scholar 

  25. Zhuang, P., Wang, Y. Qiao, Y.: Learning attentive pairwise interaction for fine-grained classification. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 13130–13137 (2020)

    Google Scholar 

  26. Li, H., Zhang, X., Tian, Q., Xiong, H.: Attribute mix: semantic data augmentation for fine grained recognition. In: Proceedings of the IEEE International Conference on Visual Communications and Image Processing (VCIP), pp. 243–246 (2020)

    Google Scholar 

  27. Wang, S., Li, H., Wang, Z. Ouyang, W.: Dynamic position-aware network for fine-grained image recognition. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 35, pp. 2791–2799 (2021)

    Google Scholar 

  28. Deng, W., Marsh, J., Gould, S., Zheng, L.: Fine-grained classification via categorical memory networks. IEEE Trans. Image Process. 31, 4186–4196 (2022)

    Article  Google Scholar 

  29. Yang, X., Wang, Y., Chen, K., Xu, Y. Tian, Y.: Fine-grained object classification via self-supervised pose alignment. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 7399–7408 (2022)

    Google Scholar 

  30. Ke, X., Cai, Y., Chen, B., Liu, H., Guo, W.: Granularity-aware distillation and structure modeling region proposal network for fine-grained image classification. Pattern Recogn. 137, 109305 (2023)

    Article  Google Scholar 

  31. Kim, S., Nam, J. Ko, B.C.: Vit-net: interpretable vision transformers with neural tree decoder. In: International Conference on Machine Learning, pp. 11162–11172 (2022)

    Google Scholar 

  32. Do, T., Tran, H., Tjiputra, E., Tran, Q.D., Nguyen, A.: Fine-grained visual classification using self assessment classifier. arXiv preprint arXiv:2205.10529 (2022)

  33. Zhu, H., Ke, W., Li, D., Liu, J., Tian, L., Shan, Y.: Dual cross-attention learning for fine-grained visual categorization and object re-identification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4692–4702 (2022)

    Google Scholar 

  34. Chou, P.Y., Lin, C.H., Kao, W.C.: A novel plug-in module for fine-grained visual classification. arXiv preprint arXiv:2202.03822 (2022)

  35. Xu, Q., Wang, J., Jiang, B., Luo, B.: Fine-grained visual classification via internal ensemble learning transformer. IEEE Trans. Multimedia (2023)

    Google Scholar 

  36. Ji, R., Li, J., Zhang, L., Liu, J. Wu, Y.: Dual transformer with multi-grained assembly for fine-grained visual classification. IEEE Trans. Circuits Syst. Video Technol. (2023)

    Google Scholar 

  37. Zhang, Z.C., Chen, Z.D., Wang, Y., Luo, X., Xu, X.S.: A vision transformer for fine-grained classification by reducing noise and enhancing discriminative information. Pattern Recogn. 145, 109979 (2024)

    Article  Google Scholar 

  38. Xu, Q., Li, S., Wang, J., Jiang, B., Tang, J.: Context-semantic quality awareness network for fine-grained visual categorization. arXiv preprint arXiv:2403.10298 (2024)

Download references

Acknowledgements

This research was supported by the Fundamental Research Funds for the Central Universities (grant nos. 2662022XXYJ006, 2662017PY059 and 2662023XXPY005), the National Natural Science Foundation of China (grant no. 61176052), and Yingzi Tech & Huazhong Agricultural University Intelligent Research Institute of Food Health(grant nos. IRIFH202212 and IRIFH202304).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Luo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, C. et al. (2025). Foreground-Background Partitioning and Feature Fusion for Weakly Supervised Fine-Grained Image Recognition. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15033. Springer, Singapore. https://doi.org/10.1007/978-981-97-8502-5_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8502-5_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8501-8

  • Online ISBN: 978-981-97-8502-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics