Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

3DLaneFormer: End-to-End 3D Lane Detection with Voxel Descriptors

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2024)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 15034))

Included in the following conference series:

  • 107 Accesses

Abstract

3D lane detection plays an integral role in autonomous driving, traffic planning, and intelligent transportation systems. It bolsters driving safety and efficiency, improves navigation accuracy, and aids in comprehending and predicting complex road conditions. However, due to the absence of depth information, monocular 3D lane detection is a challenging task. One common approach is to convert front-view (FV) images or features into bird’s-eye-view (BEV) space using inverse perspective mapping (IPM) and detect lanes based on BEV features. But the reliance of IPM on the assumption of a flat ground and the loss of contextual information hinder accurate 3D reconstruction from BEV representations. Although previous methods based on 3D anchor have attempted to overcome it, they often suffer from the complexity of two-stage processing and encounter difficulties when pooling anchors in a 2D setting. In this paper, we propose a 3D feature amplifier that incorporates crucial height information to shape the spatial characteristics of lanes. Additionally, we redefine more suitable anchors to further exploit the potential of this module. Extensive experiments on two popular 3D lane detection benchmarks demonstrate that our 3DLaneFormer outperforms previous anchor-based methods and BEV-based methods, could achieves state-of-the-art performance within these categories of methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Altché, F., de La Fortelle, A.: An lstm network for highway trajectory prediction. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 353–359. IEEE (2017)

    Google Scholar 

  2. Aly, M.: Real time detection of lane markers in urban streets. In: 2008 IEEE Intelligent Vehicles Symposium, pp. 7–12. IEEE (2008)

    Google Scholar 

  3. Bai, M., Mattyus, G., Homayounfar, N., Wang, S., Lakshmikanth, S.K., Urtasun, R.: Deep multi-sensor lane detection. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3102–3109. IEEE (2018)

    Google Scholar 

  4. Benmansour, N., Labayrade, R., Aubert, D., Glaser, S.: Stereovision-based 3d lane detection system: a model driven approach. In: 2008 11th International IEEE Conference on Intelligent Transportation Systems, pp. 182–188. IEEE (2008)

    Google Scholar 

  5. Chen, L., Sima, C., Li, Y., Zheng, Z., Xu, J., Geng, X., Li, H., He, C., Shi, J., Qiao, Y., et al.: Persformer: 3d lane detection via perspective transformer and the openlane benchmark. In: European Conference on Computer Vision, pp. 550–567. Springer (2022)

    Google Scholar 

  6. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  7. Efrat, N., Bluvstein, M., Oron, S., Levi, D., Garnett, N., Shlomo, B.E.: 3d-lanenet+: Anchor free lane detection using a semi-local representation. arXiv preprint arXiv:2011.01535 (2020)

  8. Garnett, N., Cohen, R., Pe’er, T., Lahav, R., Levi, D.: 3d-lanenet: end-to-end 3d multiple lane detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2921–2930 (2019)

    Google Scholar 

  9. Guo, Y., Chen, G., Zhao, P., Zhang, W., Miao, J., Wang, J., Choe, T.E.: Gen-lanenet: A generalized and scalable approach for 3d lane detection. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXI 16, pp. 666–681. Springer (2020)

    Google Scholar 

  10. Han, J., Deng, X., Cai, X., Yang, Z., Xu, H., Xu, C., Liang, X.: Laneformer: Object-aware row-column transformers for lane detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 799–807 (2022)

    Google Scholar 

  11. He, Y., Wang, H., Zhang, B.: Color-based road detection in urban traffic scenes. IEEE Trans. Intell. Transp. Syst. 5(4), 309–318 (2004)

    Article  Google Scholar 

  12. Hou, Y., Ma, Z., Liu, C., Loy, C.C.: Learning lightweight lane detection cnns by self attention distillation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1013–1021 (2019)

    Google Scholar 

  13. Huang, S., Shen, Z., Huang, Z., Ding, Z.h., Dai, J., Han, J., Wang, N., Liu, S.: Anchor3dlane: Learning to regress 3d anchors for monocular 3d lane detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17451–17460 (2023)

    Google Scholar 

  14. Kim, Z.: Robust lane detection and tracking in challenging scenarios. IEEE Trans. Intell. Transp. Syst. 9(1), 16–26 (2008)

    Article  Google Scholar 

  15. Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  16. Li, C., Shi, J., Wang, Y., Cheng, G.: Reconstruct from top view: A 3d lane detection approach based on geometry structure prior. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4370–4379 (2022)

    Google Scholar 

  17. Li, X., Li, J., Hu, X., Yang, J.: Line-cnn: End-to-end traffic line detection with line proposal unit. IEEE Trans. Intell. Transp. Syst. 21(1), 248–258 (2019)

    Article  Google Scholar 

  18. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)

    Google Scholar 

  19. Liu, R., Wang, J., Zhang, B.: High definition map for automated driving: Overview and analysis. J. Navigat. 73(2), 324–341 (2020)

    Article  Google Scholar 

  20. Liu, R., Chen, D., Liu, T., Xiong, Z., Yuan, Z.: Learning to predict 3d lane shape and camera pose from a single image via geometry constraints. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 1765–1772 (2022)

    Google Scholar 

  21. Pan, X., Shi, J., Luo, P., Wang, X., Tang, X.: Spatial as deep: Spatial cnn for traffic scene understanding. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  22. Qin, T., Chen, T., Chen, Y., Su, Q.: Avp-slam: Semantic visual mapping and localization for autonomous vehicles in the parking lot. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5939–5945. IEEE (2020)

    Google Scholar 

  23. Qin, Z., Wang, H., Li, X.: Ultra fast structure-aware deep lane detection. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIV 16, pp. 276–291. Springer (2020)

    Google Scholar 

  24. Qin, Z., Zhang, P., Li, X.: Ultra fast deep lane detection with hybrid anchor driven ordinal classification. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2022)

    Google Scholar 

  25. Tabelini, L., Berriel, R., Paixao, T.M., Badue, C., De Souza, A.F., Oliveira-Santos, T.: Keep your eyes on the lane: Real-time attention-guided lane detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 294–302 (2021)

    Google Scholar 

  26. Targ, S., Almeida, D., Lyman, K.: Resnet in resnet: Generalizing residual architectures. arXiv preprint arXiv:1603.08029 (2016)

  27. Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)

    Google Scholar 

  28. Wang, Y., Teoh, E.K., Shen, D.: Lane detection and tracking using b-snake. Image Vis. Comput. 22(4), 269–280 (2004)

    Article  Google Scholar 

  29. Xu, S., Cai, X., Zhao, B., Zhang, L., Xu, H., Fu, Y., Xue, X.: Rclane: Relay chain prediction for lane detection. In: European Conference on Computer Vision, pp. 461–477. Springer (2022)

    Google Scholar 

  30. Yan, F., Nie, M., Cai, X., Han, J., Xu, H., Yang, Z., Ye, C., Fu, Y., Mi, M.B., Zhang, L.: Once-3dlanes: Building monocular 3d lane detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17143–17152 (2022)

    Google Scholar 

  31. Yoo, S., Lee, H.S., Myeong, H., Yun, S., Park, H., Cho, J., Kim, D.H.: End-to-end lane marker detection via row-wise classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1006–1007 (2020)

    Google Scholar 

  32. Zheng, T., Huang, Y., Liu, Y., Tang, W., Yang, Z., Cai, D., He, X.: Clrnet: Cross layer refinement network for lane detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 898–907 (2022)

    Google Scholar 

  33. Zhou, S., Jiang, Y., Xi, J., Gong, J., Xiong, G., Chen, H.: A novel lane detection based on geometrical model and gabor filter. In: 2010 IEEE Intelligent Vehicles Symposium, pp. 59–64. IEEE (2010)

    Google Scholar 

  34. Zhu, S., Aksun-Guvenc, B.: Trajectory planning of autonomous vehicles based on parameterized control optimization in dynamic on-road environments. J. Intell. Robot. Syst. 100(3), 1055–1067 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xie, Q., Zhao, X., Zhang, X., Wang, S., Jiang, Y., Zhang, L. (2025). 3DLaneFormer: End-to-End 3D Lane Detection with Voxel Descriptors. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15034. Springer, Singapore. https://doi.org/10.1007/978-981-97-8505-6_31

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-8505-6_31

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-8504-9

  • Online ISBN: 978-981-97-8505-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics