Abstract
3D lane detection plays an integral role in autonomous driving, traffic planning, and intelligent transportation systems. It bolsters driving safety and efficiency, improves navigation accuracy, and aids in comprehending and predicting complex road conditions. However, due to the absence of depth information, monocular 3D lane detection is a challenging task. One common approach is to convert front-view (FV) images or features into bird’s-eye-view (BEV) space using inverse perspective mapping (IPM) and detect lanes based on BEV features. But the reliance of IPM on the assumption of a flat ground and the loss of contextual information hinder accurate 3D reconstruction from BEV representations. Although previous methods based on 3D anchor have attempted to overcome it, they often suffer from the complexity of two-stage processing and encounter difficulties when pooling anchors in a 2D setting. In this paper, we propose a 3D feature amplifier that incorporates crucial height information to shape the spatial characteristics of lanes. Additionally, we redefine more suitable anchors to further exploit the potential of this module. Extensive experiments on two popular 3D lane detection benchmarks demonstrate that our 3DLaneFormer outperforms previous anchor-based methods and BEV-based methods, could achieves state-of-the-art performance within these categories of methods.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Altché, F., de La Fortelle, A.: An lstm network for highway trajectory prediction. In: 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), pp. 353–359. IEEE (2017)
Aly, M.: Real time detection of lane markers in urban streets. In: 2008 IEEE Intelligent Vehicles Symposium, pp. 7–12. IEEE (2008)
Bai, M., Mattyus, G., Homayounfar, N., Wang, S., Lakshmikanth, S.K., Urtasun, R.: Deep multi-sensor lane detection. In: 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3102–3109. IEEE (2018)
Benmansour, N., Labayrade, R., Aubert, D., Glaser, S.: Stereovision-based 3d lane detection system: a model driven approach. In: 2008 11th International IEEE Conference on Intelligent Transportation Systems, pp. 182–188. IEEE (2008)
Chen, L., Sima, C., Li, Y., Zheng, Z., Xu, J., Geng, X., Li, H., He, C., Shi, J., Qiao, Y., et al.: Persformer: 3d lane detection via perspective transformer and the openlane benchmark. In: European Conference on Computer Vision, pp. 550–567. Springer (2022)
Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer, M., Heigold, G., Gelly, S., et al.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)
Efrat, N., Bluvstein, M., Oron, S., Levi, D., Garnett, N., Shlomo, B.E.: 3d-lanenet+: Anchor free lane detection using a semi-local representation. arXiv preprint arXiv:2011.01535 (2020)
Garnett, N., Cohen, R., Pe’er, T., Lahav, R., Levi, D.: 3d-lanenet: end-to-end 3d multiple lane detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2921–2930 (2019)
Guo, Y., Chen, G., Zhao, P., Zhang, W., Miao, J., Wang, J., Choe, T.E.: Gen-lanenet: A generalized and scalable approach for 3d lane detection. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXI 16, pp. 666–681. Springer (2020)
Han, J., Deng, X., Cai, X., Yang, Z., Xu, H., Xu, C., Liang, X.: Laneformer: Object-aware row-column transformers for lane detection. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 799–807 (2022)
He, Y., Wang, H., Zhang, B.: Color-based road detection in urban traffic scenes. IEEE Trans. Intell. Transp. Syst. 5(4), 309–318 (2004)
Hou, Y., Ma, Z., Liu, C., Loy, C.C.: Learning lightweight lane detection cnns by self attention distillation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 1013–1021 (2019)
Huang, S., Shen, Z., Huang, Z., Ding, Z.h., Dai, J., Han, J., Wang, N., Liu, S.: Anchor3dlane: Learning to regress 3d anchors for monocular 3d lane detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17451–17460 (2023)
Kim, Z.: Robust lane detection and tracking in challenging scenarios. IEEE Trans. Intell. Transp. Syst. 9(1), 16–26 (2008)
Kingma, D.P., Ba, J.: Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)
Li, C., Shi, J., Wang, Y., Cheng, G.: Reconstruct from top view: A 3d lane detection approach based on geometry structure prior. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4370–4379 (2022)
Li, X., Li, J., Hu, X., Yang, J.: Line-cnn: End-to-end traffic line detection with line proposal unit. IEEE Trans. Intell. Transp. Syst. 21(1), 248–258 (2019)
Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980–2988 (2017)
Liu, R., Wang, J., Zhang, B.: High definition map for automated driving: Overview and analysis. J. Navigat. 73(2), 324–341 (2020)
Liu, R., Chen, D., Liu, T., Xiong, Z., Yuan, Z.: Learning to predict 3d lane shape and camera pose from a single image via geometry constraints. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 36, pp. 1765–1772 (2022)
Pan, X., Shi, J., Luo, P., Wang, X., Tang, X.: Spatial as deep: Spatial cnn for traffic scene understanding. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)
Qin, T., Chen, T., Chen, Y., Su, Q.: Avp-slam: Semantic visual mapping and localization for autonomous vehicles in the parking lot. In: 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 5939–5945. IEEE (2020)
Qin, Z., Wang, H., Li, X.: Ultra fast structure-aware deep lane detection. In: Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXIV 16, pp. 276–291. Springer (2020)
Qin, Z., Zhang, P., Li, X.: Ultra fast deep lane detection with hybrid anchor driven ordinal classification. In: IEEE Transactions on Pattern Analysis and Machine Intelligence (2022)
Tabelini, L., Berriel, R., Paixao, T.M., Badue, C., De Souza, A.F., Oliveira-Santos, T.: Keep your eyes on the lane: Real-time attention-guided lane detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 294–302 (2021)
Targ, S., Almeida, D., Lyman, K.: Resnet in resnet: Generalizing residual architectures. arXiv preprint arXiv:1603.08029 (2016)
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł., Polosukhin, I.: Attention is all you need. Adv. Neural Inf. Process. Syst. 30 (2017)
Wang, Y., Teoh, E.K., Shen, D.: Lane detection and tracking using b-snake. Image Vis. Comput. 22(4), 269–280 (2004)
Xu, S., Cai, X., Zhao, B., Zhang, L., Xu, H., Fu, Y., Xue, X.: Rclane: Relay chain prediction for lane detection. In: European Conference on Computer Vision, pp. 461–477. Springer (2022)
Yan, F., Nie, M., Cai, X., Han, J., Xu, H., Yang, Z., Ye, C., Fu, Y., Mi, M.B., Zhang, L.: Once-3dlanes: Building monocular 3d lane detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 17143–17152 (2022)
Yoo, S., Lee, H.S., Myeong, H., Yun, S., Park, H., Cho, J., Kim, D.H.: End-to-end lane marker detection via row-wise classification. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 1006–1007 (2020)
Zheng, T., Huang, Y., Liu, Y., Tang, W., Yang, Z., Cai, D., He, X.: Clrnet: Cross layer refinement network for lane detection. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 898–907 (2022)
Zhou, S., Jiang, Y., Xi, J., Gong, J., Xiong, G., Chen, H.: A novel lane detection based on geometrical model and gabor filter. In: 2010 IEEE Intelligent Vehicles Symposium, pp. 59–64. IEEE (2010)
Zhu, S., Aksun-Guvenc, B.: Trajectory planning of autonomous vehicles based on parameterized control optimization in dynamic on-road environments. J. Intell. Robot. Syst. 100(3), 1055–1067 (2020)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Xie, Q., Zhao, X., Zhang, X., Wang, S., Jiang, Y., Zhang, L. (2025). 3DLaneFormer: End-to-End 3D Lane Detection with Voxel Descriptors. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15034. Springer, Singapore. https://doi.org/10.1007/978-981-97-8505-6_31
Download citation
DOI: https://doi.org/10.1007/978-981-97-8505-6_31
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-8504-9
Online ISBN: 978-981-97-8505-6
eBook Packages: Computer ScienceComputer Science (R0)