Abstract
Oracle bone characters (OBCs) serve as vital resources for the in-depth study of Chinese history and the development of writing systems. The recognition of OBCs holds immense significance in the realm of oracle research. Despite the growing adoption of deep learning techniques for OBC recognition, their widespread implementation has been hindered by challenges such as category imbalance and inaccurate labeling in existing datasets. We construct a radical-level oracle bone character dataset (ROBC) in response to these challenges. To mitigate the issue of inaccurate labeling, we rigorously clean the existing dataset based solely on glyph criteria. Moreover, we pioneer the annotation of radical-level information in the oracle bone character dataset. Through statistical analysis, we demonstrate the efficacy of radical-level annotations in alleviating the class imbalance issue prevalent in existing OBC datasets. In addition, we conduct closed and open set recognition tasks on the ROBC using multiple baseline models and achieve considerable results, demonstrating the versatility and robustness of the ROBC dataset and laying the foundation for future research in the OBC recognition. The ROBC dataset is temporarily available at https://github.com/ycfang-lab/ROBC.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aliprand, J.M.: The unicode standard. Lib. Resour. Tech. Serv. 44(3), 160–167 (2011)
Cao, Z., Lu, J., Cui, S., Zhang, C.: Zero-shot handwritten Chinese character recognition with hierarchical decomposition embedding. Pattern Recogn. 107, 107488 (2020). https://doi.org/10.1016/j.patcog.2020.107488, https://www.sciencedirect.com/science/article/pii/S0031320320302910
Chen, N.: Complete Compilation of Imitation and Interpretation of Oracle Bone Inscriptions in Yin Ruins. Thread-Binding Books Publishing House (2010)
Chen, N.: Jiaguwenzi Xinbian (New Compilation of Oracle Bone Characters). Zhonghua Book Company, Beijing, CHN (2017)
Chen, N.: Yinxu jiaguwen shujuku (database of oracle bone inscriptions in the yin ruins) (Jan 2018), http://obid.ancientbooks.cn/
Chen, N.: YinXu Jiaguwen Cileibian (The Compendium of Inscribed Oracle Bones from Yin Ruins). Sichuan Cishu Publishing House, Sichuan, CHN (2021)
Chin-hsiung, H.: Oracle bones from the white and other collections. In: Oracle Bones from the White and Other Collections. Brill (1979)
Chou, H.H.: Oracle Bone Collections in the United States. University of California Press, Berkeley, USA (1976). https://doi.org/10.1525/9780520352308
Flad, R.K.: Divination and power: a multiregional view of the development of oracle bone divination in early china. Curr. Anthropol. 49(3), 403–437 (2008). https://doi.org/10.1086/588495
Gao, F., Chen, X., Li, B., Liu, Y., Jiang, R., Han, Y.: Linking unknown characters via oracle bone inscriptions retrieval. Multimed. Syst. 30(3), 125 (2024). https://doi.org/10.1007/s00530-024-01327-7
Gu, S.: Identification of oracle-bone script fonts based on topological registration. Comput. Digit. Eng. 44(10), 2001–2006 (2016). https://doi.org/10.3969/j.issn.1672-9722.2016.10.029
Guo, J., Wang, C., Roman-Rangel, E., Chao, H., Rui, Y.: Building hierarchical representations for oracle character and sketch recognition. IEEE Trans. Image Process. 25(1), 104–118 (2016). https://doi.org/10.1109/TIP.2015.2500019
Guo, M., Hu, H.: Jiaguwen Heji (The Great Collection of the Oracle Bone Inscriptions). Zhonghua Book Company, Beijing, CHN (1978)
Han, W., Ren, X., Lin, H., Fu, Y., Xue, X.: Self-supervised learning of orc-bert augmentator for recognizing few-shot oracle characters. In: Proceedings of the Asian Conference on Computer Vision (ACCV) (Nov 2020)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Huang, S., Wang, H., Liu, Y., Shi, X., Jin, L.: Obc306: a large-scale oracle bone character recognition dataset. In: 2019 International Conference on Document Analysis and Recognition, pp. 681–688. ICDAR’19, IEEE Computer Society, Los Alamitos, CA, USA (Sep t2019). https://doi.org/10.1109/ICDAR.2019.00114
Huang, T.: Jiaguwen Moben Daxi (The Facsimile Edition of Oracle Bone Inscriptions). Peking University Press, Beijing, CHN (2022)
Li, B., Dai, Q., Gao, F., Zhu, W., Li, Q., Liu, Y.: Hwobc-a handwriting oracle bone character recognition database. J. Phys. Conf. Ser. 1651(1), 012050 (2020). https://doi.org/10.1088/1742-6596/1651/1/012050
Li, Q., Yang, Y.: A human-computer interactive dynamic description method for Jiaguwen characters. Proc. Eng. 29, 1013–1017 (2012). https://doi.org/10.1016/j.proeng.2012.01.081. (2012 International Workshop on Information and Electronics Engineering)
Li, Q., Yang, Y., Wang, A.: Recognition of inscriptions on bones or tortoise shells based on graph isomorphism. Comput. Eng. Appl. 47(08), 112–114 (2011). https://doi.org/10.3778/j.issn.1002-8331.2011.08.033
Li, Z., Huang, Y., Peng, D., He, M., Jin, L.: Sidenet: Learning representations from interactive side information for zero-shot chinese character recognition. Pattern Recogn. 148, 110208 (2024). https://doi.org/10.1016/j.patcog.2023.110208, https://www.sciencedirect.com/science/article/pii/S0031320323009056
Li, Z.: Jiaguwen Zibian (Compilation of Oracle Bone Characters). Zhonghua Book Company, Beijing, CHN (2012)
Lin, X., Chen, S., Zhao, F., Qiu, X.: Radical-based extract and recognition networks for oracle character recognition. Int. J. Doc. Anal. Recognit. (IJDAR) 25(3), 219–235 (2022). https://doi.org/10.1007/s10032-021-00392-2
Liu, E.: Tieyun Canggui. Baoshoucanque Zhai Lithographic Publishing, Beijing, CHN (1903)
Liu, G., Xing, J., Xiong, J.: Spatial pyramid block for oracle bone inscription detection. In: Proceedings of the 2020 9th International Conference on Software and Computer Applications, pp. 133–140. ICSCA’20, Association for Computing Machinery, New York, NY, USA (2020). https://doi.org/10.1145/3384544.3384561
Liu, J.: Shandongsheng Bowuguan Zhencang Jiagu Motaji (Collection of oracle bone ink rubbings from Shandong Provincial Museum). Shandong Qilu Press Co., Ltd, Shandong, CHN (1988)
Liu, Y.: Yinqi wenyuan (database of oracle bone history research) (Jan 2018). http://jgw.aynu.edu.cn/ajaxpage/home2.0/index.html
Liu, Z., Feng, K.: Jiaguwen Changyongzi Zidian (Dictionary of Commonly Used Characters in Oracle Bone Inscriptions). Zhonghua Book Company, Beijing, CHN (2019)
Lv, X., Li, M., Cai, K., Wang, X., Tang, Y.: A graphic based method for Chinese oracle-bone classification. J. Beijing Inf. Sci. Technol. Univ. 25(52), 92–96 (2010). https://doi.org/10.16508/j.cnki.11-5866/n.2010.s2.019
Ma, R.: Yinxu Jiaguwen Shiyong Zidian (Practical Dictionary of Oracle Bone Inscriptions in Yin Ruins). Shanghai University Press, Shanghai, CHN (2008)
Meng, L., Kamitoku, N., Yamazaki, K.: Recognition of oracle bone inscriptions using deep learning based on data augmentation. In: 2018 Metrology for Archaeology and Cultural Heritage (MetroArchaeo), pp. 33–38 (2018). https://doi.org/10.1109/MetroArchaeo43810.2018.9089769
Menzies, J.M.: Oracle records from the Waste of Yin. Kelly & Walsh (1917)
Peng, B., Xie, J., Ma, J.: Jiaguwen Heji Bubian (A Supplement to the Great Collection of the Oracle Bone Inscriptions). Language & Culture Press, Beijing, CHN (1999)
Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115, 211–252 (2015)
Shen, J., Cao, J.: Xinbian Jiaguwen Zixing Zongbiao (New Compilation of Oracle Bone Glyphs). The Chinese University of Hong Kong Press, Hong Kong, CHN (2001)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014). arXiv:1409.1556
Song, Z., Jiao, Z., Sun, Y.: Yinxu Jiagu Shiyi (Supplementary Discoveries of Oracle Bones of Yin Ruins). China Social Sciences Press, Beijing, CHN (2015)
Wang, M., Deng, W.: A dataset of oracle characters for benchmarking machine learning algorithms. Sci. Data 11(1), 87 (2024). https://doi.org/10.1038/s41597-024-02933-w
Wang, M., Deng, W., Liu, C.L.: Unsupervised structure-texture separation network for oracle character recognition. IEEE Trans. Image Process. 31, 3137–3150 (2022). https://doi.org/10.1109/TIP.2022.3165989
Wang, M., Deng, W., Su, S.: Oracle character recognition using unsupervised discriminative consistency network. Pattern Recogn. 148, 110180 (2024)
Xu, Z.: Jiaguwen Zidian (Dictionary of Oracle Bone Inscriptions). Sichuan Lexicographical Publishing House, Chengdu, CHN (2021)
XueQin Li, Wenxin Qi, L.A.: Yingguo Suocang Jiagu Ji (Oracle bone collections in Great Britain). Zhonghua Book Company, Beijing, CHN (1985)
Yang, C., Wang, Q., Du, J., Zhang, J., Wu, C., Wang, J.: A transformer-based radical analysis network for Chinese character recognition. In: 2020 25th International Conference on Pattern Recognition (ICPR), pp. 3714–3719 (2021). https://doi.org/10.1109/ICPR48806.2021.9412439
Yetts, W.P.: The shang-yin dynasty and the an-yang finds. J. R. Asiat. Soc. 65(3), 657–685 (1933). https://doi.org/10.1017/S1356186300500078
Yue, X., Li, H., Fujikawa, Y., Meng, L.: Dynamic dataset augmentation for deep learning-based oracle bone inscriptions recognition. J, Comput. Cultural Herit. 15(4) (2022). https://doi.org/10.1145/3532868
Zhang, Y.K., Zhang, H., Liu, Y.G., Yang, Q., Liu, C.L.: Oracle character recognition by nearest neighbor classification with deep metric learning. In: 2019 International Conference on Document Analysis and Recognition (ICDAR), pp. 309–314 (2019). https://doi.org/10.1109/ICDAR.2019.00057
Acknowledgements
The work is supported by the National Natural Science Foundation of China under Grant No.: 61976132 and 61991411. This work is supported by Shanghai Technical Service Center of Science and Engineering Computing, Shanghai University.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Li, Z., Li, X., Qian, K., Fang, Y. (2025). ROBC: A Radical-Level Oracle Bone Character Dataset. In: Lin, Z., et al. Pattern Recognition and Computer Vision. PRCV 2024. Lecture Notes in Computer Science, vol 15037. Springer, Singapore. https://doi.org/10.1007/978-981-97-8511-7_8
Download citation
DOI: https://doi.org/10.1007/978-981-97-8511-7_8
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-8510-0
Online ISBN: 978-981-97-8511-7
eBook Packages: Computer ScienceComputer Science (R0)