Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Related-Tweakey Boomerang and Rectangle Attacks on Reduced-Round Joltik-BC

  • Conference paper
  • First Online:
Information Security Practice and Experience (ISPEC 2024)

Abstract

As one of the candidates for authenticated encryption in the second round of the CAESAR competition, Joltik has an internal lightweight tweakable block cipher Joltik-BC. In ASIACRYPT 2014, designers stated that the real threat to Joltik-BC comes from attacks that exploit the tweakey schedule, i.e. related-tweakey differential attacks. However, there has been no such attack against Joltik-BC currently. In the paper, we evaluate the resistance to Joltik-BC against boomerang attacks. Considering that not all distinguishers with high probability have a significant effect in key recovery attacks, we incorporate the complexity of key recovery into the search for distinguishers and turn to search for the entire truncated attack paths. Specifically, by considering truncated differential propagation, we control the number of active nibbles on the sides of plaintext and ciphertext to reduce key guessing. Then we apply it to search for appropriate distinguishers of Joltik-BC. Finally, we propose a 10-round related-tweakey boomerang attack for Joltik-BC-128 and a 14-round related-tweakey rectangle attack for Joltik-BC-192. To reduce the time complexity, we also utilize the property of components to guess partial key bits and deduce other key bits. This is the first work to evaluate the resistance of related-tweakey boomerang attack for Joltik-BC and both of them increase the round number of key recovery attacks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Biham, E., Dunkelman, O., Keller, N.: The rectangle attack—rectangling the serpent. In: Pfitzmann, B. (ed.) EUROCRYPT 2001. LNCS, vol. 2045, pp. 340–357. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44987-6_21

  2. Biham, E., Dunkelman, O., Keller, N.: Related-key boomerang and rectangle attacks. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 507–525. Springer, Heidelberg (2005). https://doi.org/10.1007/11426639_30

  3. Biryukov, A., Khovratovich, D.: Related-key cryptanalysis of the full AES-192 and AES-256. In: Matsui, M. (ed.) ASIACRYPT 2009. LNCS, vol. 5912, pp. 1–18. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-10366-7_1

  4. Boura, C., Coggia, D.: Efficient MILP modelings for sboxes and linear layers of SPN ciphers. IACR Trans. Symmetric Cryptol. 2020(3), 327–361 (2020)

    Article  Google Scholar 

  5. Cid, C., Huang, T., Peyrin, T., Sasaki, Y., Song, L.: A security analysis of deoxys and its internal tweakable block ciphers. IACR Trans. Symmetric Cryptol. 2017(3), 73–107 (2017)

    Article  Google Scholar 

  6. Delaune, S., Derbez, P., Vavrille, M.: Catching the fastest boomerangs application to SKINNY. IACR Trans. Symmetric Cryptol. 2020(4), 104–129 (2020)

    Article  Google Scholar 

  7. Hadipour, H., Nageler, M., Eichlseder, M.: Throwing boomerangs into feistel structures application to clefia, warp, lblock, lblock-s and TWINE. IACR Trans. Symmetric Cryptol. 2022(3), 271–302 (2022)

    Article  Google Scholar 

  8. Jean, J., Nikolic, I., Peyrin, T.: Tweaks and keys for block ciphers: the TWEAKEY framework. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8874, pp. 274–288. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45608-8_15

  9. Jean, J., Nikolić, I., Peyrin, T.: Joltik v1. 3. CAESAR Round 2 (2015)

    Google Scholar 

  10. Kelsey, J., Kohno, T., Schneier, B.: Amplified boomerang attacks against reduced-round MARS and serpent. In: Schneier, B. (ed.) FSE 2000. LNCS, vol. 1978, pp. 75–93. Springer, Heidelberg (2000). https://doi.org/10.1007/3-540-44706-7_6

  11. Li, M., Chen, S.: Improved meet-in-the-middle attacks on reduced-round joltik-bc. IET Inf. Secur. 15(3), 247–255 (2021)

    Article  Google Scholar 

  12. Li, R., Jin, C., Pan, H.: Key recovery attacks on reduced-round joltik-bc in the single-key setting. Inf. Process. Lett. 151 (2019)

    Google Scholar 

  13. Liskov, M.D., Rivest, R.L., Wagner, D.A.: Tweakable block ciphers. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 31–46. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45708-9_3

  14. Liu, G., Ghosh, M., Song, L.: Security analysis of SKINNY under related-tweakey settings (long paper). IACR Trans. Symmetric Cryptol. 2017(3), 37–72 (2017)

    Article  Google Scholar 

  15. Liu, Y., Shi, Y., Gu, D., Zeng, Z., Zhao, F., Li, W., Liu, Z., Bao, Y.: Improved meet-in-the-middle attacks on reduced-round kiasu-bc and joltik-bc. Comput. J. 62(12), 1761–1776 (2019)

    Article  MathSciNet  Google Scholar 

  16. Murphy, S.: The return of the cryptographic boomerang. IEEE Trans. Inf. Theory 57(4), 2517–2521 (2011)

    Article  MathSciNet  Google Scholar 

  17. Sasaki, Y., Todo, Y.: New algorithm for modeling s-box in MILP based differential and division trail search. In: Farshim, P., Simion, E. (eds.) SecITC 2017. LNCS, vol. 10543, pp. 150–165. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-69284-5_11

  18. Selçuk, A.A.: On probability of success in linear and differential cryptanalysis. J. Cryptol. 21(1), 131–147 (2008)

    Article  MathSciNet  Google Scholar 

  19. Shibutani, K., Isobe, T., Hiwatari, H., Mitsuda, A., Akishita, T., Shirai, T.: Piccolo: An ultra-lightweight blockcipher. In: Preneel, B., Takagi, T. (eds.) CHES 2011. LNCS, vol. 6917, pp. 342–357. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23951-9_23

  20. Sun, L., Wang, W., Wang, M.: MILP-aided bit-based division property for primitives with non-bit-permutation linear layers. IET Inf. Secur. 14(1), 12–20 (2020)

    Article  Google Scholar 

  21. Sun, S., Hu, L., Wang, P., Qiao, K., Ma, X., Song, L.: Automatic security evaluation and (related-key) differential characteristic search: Application to simon, present, lblock, DES(L) and other bit-oriented block ciphers. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 158–178. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-45611-8_9

  22. Wagner, D.A.: The boomerang attack. In: Knudsen, L.R. (ed.) FSE 1999. LNCS, vol. 1636, pp. 156–170. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48519-8_12

  23. Zhao, B., Dong, X., Jia, K.: New related-tweakey boomerang and rectangle attacks on deoxys-bc including BDT effect. IACR Trans. Symmetric Cryptol. 2019(3), 121–151 (2019)

    Article  Google Scholar 

  24. Zong, R., Dong, X.: MILP-aided related-tweak/key impossible differential attack and its applications to qarma, joltik-bc. IEEE Access 7, 153683–153693 (2019)

    Article  Google Scholar 

Download references

Acknowledgement

The work was funded by the National Natural Science Foundation of China (Grant No. 62206312).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jiongjiong Ren .

Editor information

Editors and Affiliations

Appendix

Appendix

Table 3. A 8-round boomerang distinguisher with probability \((2^{-13})^2 \times (2^{-2})^2 \times 2^{-4} = 2^{-34}\) of Joltik-128, with parameters as \((R_b, R_0, R_m, R_1, R_f) = (1, 4, 1, 3, 1)\).
Table 4. A 11-round boomerang distinguisher with probability \((2^{-22})^2 \times (2^{-4})^2 = 2^{-52}\) of Joltik-192, with parameters as \((R_b, R_0, R_m, R_1, R_f) = (1, 6, 1, 4, 1)\).

Rights and permissions

Reprints and permissions

Copyright information

© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, K., Ren, J., Chen, S. (2025). Related-Tweakey Boomerang and Rectangle Attacks on Reduced-Round Joltik-BC. In: Xia, Z., Chen, J. (eds) Information Security Practice and Experience. ISPEC 2024. Lecture Notes in Computer Science, vol 15053. Springer, Singapore. https://doi.org/10.1007/978-981-97-9053-1_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-9053-1_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-9052-4

  • Online ISBN: 978-981-97-9053-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics