Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Language-Emphasized Cross-Lingual In-Context Learning forĀ Multilingual LLM

  • Conference paper
  • First Online:
Natural Language Processing and Chinese Computing (NLPCC 2024)

Abstract

With the recent rise of large language models (LLMs), in-context learning (ICL) has shown remarkable performance, eliminating the need for fine-tuning parameters and reducing the reliance on extensive labeled data. However, the intricacies of cross-lingual ICL remain underexplored. Prior studies on cross-lingual ICL overlooked the significance of language-specific nuances, neglecting the intrinsic linguistic properties of sentences and the interlingual connections between sentences in different languages. In this paper, we propose a novel cross-lingual prompt structure: Language-Emphasized cross-lingual In-context learning (LEI). LEI teaches LLMs how to adapt to language conversion by adding explicit language conversion examples in demonstrations. Specifically, LEI introduces a third language (example language) as an example of language conversion to adapt LLMs to language conversion in cross-lingual tasks. In addition, language alignment of demonstrations is achieved by adding language aligners and label aligners. Extensive experiments validate the state-of-the-art performance of LEI on 42 cross-lingual tasks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 64.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877ā€“1901 (2020)

    Google ScholarĀ 

  2. Chen, G., et al.: Zero-shot cross-lingual transfer of neural machine translation with multilingual pretrained encoders. arXiv preprint arXiv:2104.08757 (2021)

  3. Chowdhery, A., et al.: Palm: scaling language modeling with pathways. J. Mach. Learn. Res. 24(240), 1ā€“113 (2023)

    Google ScholarĀ 

  4. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805 (2018)

  5. Dong, Q., et al.: A survey for in-context learning. arXiv preprint arXiv:2301.00234 (2022)

  6. Keung, P., Lu, Y., Szarvas, G., Smith, N.A.: The multilingual amazon reviews corpus. arXiv preprint arXiv:2010.02573 (2020)

  7. Lin, X.V., etĀ al.: Few-shot learning with multilingual generative language models. In: Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp. 9019ā€“9052 (2022)

    Google ScholarĀ 

  8. Lu, Y., Bartolo, M., Moore, A., Riedel, S., Stenetorp, P.: Fantastically ordered prompts and where to find them: overcoming few-shot prompt order sensitivity. arXiv preprint arXiv:2104.08786 (2021)

  9. Mikolov, T., Le, Q.V., Sutskever, I.: Exploiting similarities among languages for machine translation. Comput. Sci. (2013)

    Google ScholarĀ 

  10. Min, S., et al.: Rethinking the role of demonstrations: what makes in-context learning work? In: Goldberg, Y., Kozareva, Z., Zhang, Y. (eds.) Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing, pp. 11048ā€“11064 (2022)

    Google ScholarĀ 

  11. Prettenhofer, P., Stein, B.: Cross-language text classification using structural correspondence learning. In: Proceedings of the 48th Annual Meeting Of The Association For Computational Linguistics, pp. 1118ā€“1127 (2010)

    Google ScholarĀ 

  12. Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., Sutskever, I., et al.: Language models are unsupervised multitask learners. OpenAI blog 1(8), 9 (2019)

    Google ScholarĀ 

  13. Reimers, N., Gurevych, I.: Making monolingual sentence embeddings multilingual using knowledge distillation. arXiv preprint arXiv:2004.09813 (2020)

  14. Tanwar, E., Borthakur, M., Dutta, S., Chakraborty, T.: Multilingual LLMs are better cross-lingual in-context learners with alignment. arXiv preprint arXiv:2305.05940 (2023)

  15. Webson, A., Pavlick, E.: Do prompt-based models really understand the meaning of their prompts? arXiv preprint arXiv:2109.01247 (2021)

  16. Wei, J., et al.: Chain-of-thought prompting elicits reasoning in large language models. Adv. Neural. Inf. Process. Syst. 35, 24824ā€“24837 (2022)

    Google ScholarĀ 

  17. Winata, G.I., Madotto, A., Lin, Z., Liu, R., Yosinski, J., Fung, P.: Language models are few-shot multilingual learners. arXiv preprint arXiv:2109.07684 (2021)

  18. Zhang, N., et al.: Differentiable prompt makes pre-trained language models better few-shot learners. arXiv preprint arXiv:2108.13161 (2021)

  19. Zhao, Z., Wallace, E., Feng, S., Klein, D., Singh, S.: Calibrate before use: improving few-shot performance of language models. In: International Conference on Machine Learning, pp. 12697ā€“12706. PMLR (2021)

    Google ScholarĀ 

Download references

Acknowledgements

This study was funded by National Natural Science Foundation of China (62302333) and the National Natural Science Foundation of China under Grant(U23B2053).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaobao Wang .

Editor information

Editors and Affiliations

Appendix

Appendix

The complete experimental data in the main experiment (including all the selected example languages) are shown in TableĀ 4.

Table 4. Macro-F1 scores of LEI on MARC. EXA in the table is the example language. \(k = 4\).

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Li, J., Wei, X., Wang, X., Zhuang, N., Wang, L., Dang, J. (2025). Language-Emphasized Cross-Lingual In-Context Learning forĀ Multilingual LLM. In: Wong, D.F., Wei, Z., Yang, M. (eds) Natural Language Processing and Chinese Computing. NLPCC 2024. Lecture Notes in Computer Science(), vol 15361. Springer, Singapore. https://doi.org/10.1007/978-981-97-9437-9_26

Download citation

  • DOI: https://doi.org/10.1007/978-981-97-9437-9_26

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-97-9436-2

  • Online ISBN: 978-981-97-9437-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics