Abstract
The emergence of advanced 3D sensing technologies, such as LiDAR, has significantly increased the availability of point cloud data, driving the need for robust analytics through deep learning. Point clouds, with their detailed spatiotemporal structures, are vital across numerous applications, requiring innovative approaches for effective interpretation and utilization. This chapter delves into the intersection of deep learning and point cloud analytics, covering essential tasks like point classification and semantic segmentation. It then explores place recognition, object retrieval, and registration, emphasizing their importance in interpreting dynamic environments. This chapter concludes with an examination of multimodal analysis, showcasing the synergistic potential of integrating point cloud data with other data modalities. Each section systematically unpacks the problems, general solution strategies, seminal contributions, and emerging trends, encapsulating the state-of-the-art in deep-learning-based point cloud analytics and paving the way for future advancements in the field.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
B. Qu, X. Liang, S. Sun, W. Gao, Exploring aigc video quality: a focus on visual harmony, video-text consistency and domain distribution gap, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2024)
B. Qu, H. Li, W. Gao, Bringing textual prompt to ai-generated image quality assessment, in 2024 IEEE International Conference on Multimedia and Expo (ICME) (IEEE, Piscataway, 2024)
Y. Wu, L. Xie, S. Sun, W. Gao, Y. Yan, Adaptive intra period size for deep learning-based screen content video coding, in 2024 IEEE International Conference on Multimedia and Expo Workshops (ICMEW) (IEEE, Piscataway, 2024)
H. Zheng, W. Gao, End-to-end RGB-D image compression via exploiting channel-modality redundancy. Proc. AAAI Conf. Artif. Intell. 38(7), 7562–7570 (2024)
L. Tao, W. Gao, G. Li, C. Zhang, AdaNIC: towards practical neural image compression via dynamic transform routing, in Proceedings of the IEEE/CVF International Conference on Computer Vision (2023), pp. 16 879–16 888
Y. Wu, W. Gao, End-to-end lossless compression of high precision depth maps guided by pseudo-residual. Preprint. arXiv:2201.03195 (2022)
Y. Wu, Z. Qi, H. Zheng, L. Tao, W. Gao, Deep image compression with latent optimization and piece-wise quantization approximation, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021), pp. 1926–1930
W. Gao, L. Tao, L. Zhou, D. Yang, X. Zhang, Z. Guo, Low-rate image compression with super-resolution learning, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2020), pp. 154–155
W. Gao, S. Sun, H. Zheng, Y. Wu, H. Ye, Y. Zhang, OpenDMC: an open-source library and performance evaluation for deep-learning-based multi-frame compression, in Proceedings of the 31st ACM International Conference on Multimedia (2023), pp. 9685–9688
Y. Guo, W. Gao, G. Li, Interpretable task-inspired adaptive filter pruning for neural networks under multiple constraints. Int. J. Comput. Vision 132(6) 2060–2076 (2024)
W. Gao, Y. Guo, S. Ma, G. Li, S. Kwong, Efficient neural network compression inspired by compressive sensing. IEEE Trans. Neural Networks Learn. Syst. 35(2), 1965–1979 (2022)
Y. Guo, W. Gao, Semantic-driven automatic filter pruning for neural networks, in 2022 IEEE International Conference on Multimedia and Expo (ICME) (IEEE, Piscataway, 2022), pp. 1–6
L. Tao, W. Gao, Efficient channel pruning based on architecture alignment and probability model bypassing, in 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (IEEE, Piscataway, 2021), pp. 3232–3237
Z. Yang, W. Gao, G. Li, Y. Yan, SUR-driven video coding rate control for jointly optimizing perceptual quality and buffer control. IEEE Trans. Image Proces. 32, 5451–5464 (2023)
F. Shen, Z. Cai, W. Gao, An efficient rate control algorithm for intra frame coding in AVS3, in 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (IEEE, Piscataway, 2021), pp. 3164–3169
H. Yuan, W. Gao, J. Wang, Dynamic computational resource allocation for fast inter frame coding in video conferencing applications, in 2021 IEEE International Conference on Multimedia and Expo (ICME) (IEEE, Piscataway, 2021), pp. 1–6
W. Gao, Q. Jiang, R. Wang, S. Ma, G. Li, S. Kwong, Consistent quality oriented rate control in HEVC via balancing intra and inter frame coding. IEEE Trans. Ind. Inf. 18(3), 1594–1604 (2021)
H. Yuan, W. Gao, A new coding unit partitioning mode for screen content video coding, in Proceedings of the 2021 5th International Conference on Digital Signal Processing (2021), pp. 66–72
W. Gao, On the performance evaluation of state-of-the-art rate control algorithms for practical video coding and transmission systems, in Proceedings of the 2020 4th International Conference on Video and Image Processing (2020), pp. 179–185
W. Gao, S. Kwong, Q. Jiang, C.-K. Fong, P.H. Wong, W.Y. Yuen, Data-driven rate control for rate-distortion optimization in HEVC based on simplified effective initial QP learning. IEEE Trans. Broadcast. 65(1), 94–108 (2018)
W. Gao, A multi-objective optimization perspective for joint consideration of video coding quality, in 2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) (IEEE, Piscataway, 2019), pp. 986–991
W. Gao, S. Kwong, Y. Jia, Joint machine learning and game theory for rate control in high efficiency video coding. IEEE Trans. Image Proces. 26(12), 6074–6089 (2017)
W. Gao, S. Kwong, Y. Zhou, H. Yuan, SSIM-based game theory approach for rate-distortion optimized intra frame CTU-level bit allocation. IEEE Trans. Multimedia 18(6), 988–999 (2016)
W. Gao, S. Kwong, H. Yuan, X. Wang, DCT coefficient distribution modeling and quality dependency analysis based frame-level bit allocation for HEVC. IEEE Trans. Circuits Syst. Video Technol. 26(1), 139–153 (2015)
W. Gao, S. Kwong, Phase congruency based edge saliency detection and rate control for perceptual image and video coding, in 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (IEEE, Piscataway, 2016), pp. 000 264–000 269
H. Yuan, W. Gao, OpenFastVC: an open source library for video coding fast algorithm implementation, in Proceedings of the 31st ACM International Conference on Multimedia (2023), pp. 9660–9663
H. Yuan, W. Gao, S. Ma, Y. Yan, Divide-and-conquer-based RDO-free CU partitioning for 8K video compression. ACM Trans. Multimedia Comput. Commun. Appl. 20(4), 1–20 (2024)
L. Tao, W. Gao, A hardware implementation of entropy encoder for 8k video coding, in 2022 IEEE International Conference on Multimedia and Expo (ICME) (IEEE, Piscataway, 2022), pp. 1–6
Y. Guo, W. Gao, S. Ma, G. Li, Accelerating transform algorithm implementation for efficient intra coding of 8k UHD videos. ACM Trans. Multimedia Comput. Commun. Appl. 18(4), 1–20 (2022)
Z. Cai, W. Gao, Efficient fast algorithm and parallel hardware architecture for intra prediction of AVS3, in 2021 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, Piscataway, 2021), pp. 1–5
W. Gao, H. Yuan, Y. Guo, L. Tao, Z. Cai, G. Li, OpenHardwareVC: an open source library for 8K UHD video coding hardware implementation, in Proceedings of the 30th ACM International Conference on Multimedia (2022), pp. 7339–7342
W. Gao, H. Yuan, G. Liao, Z. Guo, J. Chen, PP8K: a new dataset for 8K UHD video compression and processing. IEEE MultiMedia 30(3), 100–109 (2023)
X. Zang, W. Gao, G. Li, H. Fang, C. Ban, Z. He, H. Sun, A baseline investigation: transformer-based cross-view baseline for text-based person search, in Proceedings of the 31st ACM International Conference on Multimedia (2023), pp. 7737–7746
G. Liao, W. Gao, G. Li, J. Wang, S. Kwong, Cross-collaborative fusion-encoder network for robust RGB-thermal salient object detection. IEEE Trans. Circuits Syst. Video Technol. 32(11), 7646–7661 (2022)
W. Gao, G. Liao, S. Ma, G. Li, Y. Liang, W. Lin, Unified information fusion network for multi-modal RGB-D and RGB-T salient object detection. IEEE Trans. Circuits Syst. Video Technol. 32(4), 2091–2106 (2021)
Y. Chen, S. Sun, G. Li, W. Gao, T.H. Li, Closing the gap between theory and practice during alternating optimization for gans. IEEE Trans. Neural Networks Learn. Syst. 35(10), 14005–14017 (2024)
Y. Chen, C. Jin, G. Li, T.H. Li, W. Gao, Mitigating label noise in gans via enhanced spectral normalization. IEEE Trans. Circuits Syst. Video Technol. 33(8), 3924–3934 (2023)
X. Zang, G. Li, W. Gao, Multidirection and multiscale pyramid in transformer for video-based pedestrian retrieval. IEEE Trans. Ind. Inf. 18(12), 8776–8785 (2022)
X. Zang, G. Li, W. Gao, X. Shu, Learning to disentangle scenes for person re-identification. Image Vision Comput. 116, 104330 (2021)
X. Zang, G. Li, W. Gao, X. Shu, Exploiting robust unsupervised video person re-identification. IET Image Proces. 16(3), 729–741 (2022)
Z. Yue, G. Li, W. Gao, Cross-level guided attention for human-object interaction detection, in 2023 IEEE International Conference on Multimedia and Expo Workshops (ICMEW) (IEEE, Piscataway, 2023), pp. 284–289
Z. Yao, W. Gao, Iterative saliency aggregation and assignment network for efficient salient object detection in optical remote sensing images. IEEE Trans. Geosci. Remote Sens. 62, 1–13 (2024)
Y. Sun, Z. Li, S. Wang, W. Gao, Depth-assisted calibration on learning-based factorization for a compressive light field display. Opt. Exp. 31(4), 5399–5413 (2023)
Y. Sun, Z. Li, L. Li, S. Wang, W. Gao, Optimization of compressive light field display in dual-guided learning, in ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, Piscataway, 2022), pp. 2075–2079
W. Gao, S. Fan, G. Li, W. Lin, A thorough benchmark and a new model for light field saliency detection. IEEE Trans. Pattern Anal. Mach. Intell. 45(7), 8003–8019 (2023)
Z. Guo, W. Gao, H. Wang, J. Wang, S. Fan, No-reference deep quality assessment of compressed light field images, in 2021 IEEE International Conference on Multimedia and Expo (ICME) (IEEE, Piscataway, 2021), pp. 1–6
G. Liao, W. Gao, Rethinking feature mining for light field salient object detection. ACM Trans. Multimedia Comput. Commun. Appl. 20(10), 1–24 (2024)
S. Sun, J. Liu, T.H. Li, H. Li, G. Liu, W. Gao, Streamflow: Streamlined multi-frame optical flow estimation for video sequences. Preprint. arXiv:2311.17099 (2023)
R. Liu, J. Huang, W. Gao, T.H. Li, G. Li, Mug-STAN: adapting image-language pretrained models for general video understanding. Preprint. arXiv:2311.15075 (2023)
C. Zhang, W. Gao, Learned rate control for frame-level adaptive neural video compression via dynamic neural network, in European Conference on Computer Vision (Springer, Berlin, 2024)
W. Gao, G. Li, H. Yuan, R. Hamzaoui, Z. Li, S. Liu, Apccpa’22: 1st international workshop on advances in point cloud compression, processing and analysis, in Proceedings of the 30th ACM International Conference on Multimedia (2022), pp. 7392–7393
T. Qin, G. Li, W. Gao, S. Liu, Multi-grained point cloud geometry compression via dual-model prediction with extended octree. ACM Trans. Multimedia Comput. Commun. Appl. 20(9), 1–30 (2024)
Y. Shao, W. Gao, S. Liu, G. Li, Advanced patch-based affine motion estimation for dynamic point cloud geometry compression. Sensors 24(10), 3142 (2024)
Y. Shao, F. Song, W. Gao, S. Liu, G. Li, Texture-guided graph transform optimization for point cloud attribute compression. Appl. Sci. 14(10), 4094 (2024)
Y. Shao, X. Yang, W. Gao, S. Liu, G. Li, 3d point cloud attribute compression using diffusion-based texture-aware intra prediction. IEEE Trans. Circuits Syst. Video Technol. 34(10), 9633–9646 (2024)
J. Zhang, Y. Chen, G. Liu, W. Gao, G. Li, Efficient point cloud attribute compression framework using attribute-guided graph fourier transform, in ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, Piscataway, 2024), pp. 8426–8430
W. Gao, H. Yuan, G. Li, Z. Li, H. Yuan, Low complexity coding unit decision for video-based point cloud compression. IEEE Trans. Image Proces. 33, 149–162 (2023)
Y. Shao, G. Li, Q. Zhang, W. Gao, S. Liu, Non-rigid registration-based progressive motion compensation for point cloud geometry compression. IEEE Trans. Geosci. Remote Sens. 61, 1–14 (2023)
F. Song, G. Li, X. Yang, W. Gao, S. Liu, Block-adaptive point cloud attribute coding with region-aware optimized transform. IEEE Trans. Circuits Syst. Video Technol. 33(8), 4294–4308 (2023)
Y. An, Y. Shao, G. Li, W. Gao, S. Liu, A fast motion estimation method with hamming distance for lidar point cloud compression, in 2022 IEEE International Conference on Visual Communications and Image Processing (VCIP) (IEEE, Piscataway, 2022), pp. 1–5
H. Yuan, W. Gao, G. Li, Z. Li, Rate-distortion-guided learning approach with cross-projection information for V-PCC fast CU decision, in Proceedings of the 30th ACM International Conference on Multimedia (2022), pp. 3085–3093
F. Song, G. Li, W. Gao, T.H. Li, Rate-distortion optimized graph for point cloud attribute coding. IEEE Signal Proces. Lett. 29, 922–926 (2022)
F. Song, G. Li, X. Yang, W. Gao, T.H. Li, Fine-grained correlation representation for graph-based point cloud attribute compression, in 2022 IEEE International Conference on Multimedia and Expo (ICME) (IEEE, Piscataway, 2022), pp. 1–6
F. Shen, W. Gao, A rate control algorithm for video-based point cloud compression, in 2021 International Conference on Visual Communications and Image Processing (VCIP) (IEEE, Piscataway, 2021), pp. 1–5
F. Song, Y. Shao, W. Gao, H. Wang, T. Li, Layer-wise geometry aggregation framework for lossless lidar point cloud compression. IEEE Trans. Circuits Syst. Video Technol. 31(12), 4603–4616 (2021)
L. Xie, W. Gao, H. Zheng, G. Li, SPCGC: scalable point cloud geometry compression for machine vision, in Proceedings of IEEE International Conference on Robotics and Automation (2024)
L. Xie, W. Gao, H. Zheng, H. Ye, Semantic-aware visual decomposition for point cloud geometry compression, in 2024 Data Compression Conference (DCC) (IEEE, Piscataway, 2024), pp. 595–595
Z. Qi, W. Gao, Variable-rate point cloud geometry compression based on feature adjustment and interpolation, in 2024 Data Compression Conference (DCC) (IEEE, Piscataway, 2024), pp. 63–72
Z. Yu, W. Gao, When dynamic neural network meets point cloud compression: computation-aware variable rate and checkerboard context, in 2024 Data Compression Conference (DCC) (IEEE, Piscataway, 2024), pp. 600–600
L. Xie, W. Gao, S. Fan, Z. Yao, PDNet: parallel dual-branch network for point cloud geometry compression and analysis, in 2024 Data Compression Conference (DCC) (IEEE, Piscataway, 2024), pp. 596–596
L. Xie, W. Gao, H. Zheng, End-to-end point cloud geometry compression and analysis with sparse tensor, in Proceedings of the 1st International Workshop on Advances in Point Cloud Compression, Processing and Analysis (2022), pp. 27–32
C. Fu, G. Li, R. Song, W. Gao, S. Liu, OctAttention: octree-based large-scale contexts model for point cloud compression, in AAAI Conference on Artificial Intelligence (2022), pp. 625–633
H. Zheng, W. Gao, Z. Yu, T. Zhao, G. Li, ViewPCGC: view-guided learned point cloud geometry compression, in Proceedings of the 32nd ACM International Conference on Multimedia (2024)
L. Xie, W. Gao, H. Zheng, G. Li, ROI-guided point cloud geometry compression towards human and machine vision, in Proceedings of the 32nd ACM International Conference on Multimedia (2024)
C. Peng, W. Gao, Laplacian matrix learning for point cloud attribute compression with ternary search-based adaptive block partition, in Proceedings of the 32nd ACM International Conference on Multimedia (2024)
S. Luo, B. Qu, W. Gao, Learning robust 3d representation from clip via dual denoising. Preprint. arXiv:2407.00905 (2024)
G. Li, G. Wei, W. Gao, Point Cloud Compression: Technologies and Standardization (Springer Nature, Berlin, 2024)
G. Li, W. Gao, W. Gao, Introduction, in Point Cloud Compression: Technologies and Standardization (Springer, Berlin, 2024), pp. 1–28
G. Li, W. Gao, W. Gao, Background knowledge, in Point Cloud Compression: Technologies and Standardization (Springer, Berlin, 2024), pp. 29–51
G. Li, W. Gao, W. Gao, Predictive coding, in Point Cloud Compression: Technologies and Standardization (Springer, Berlin, 2024), pp. 53–70
G. Li, W. Gao, W. Gao, Transform coding, in Point Cloud Compression: Technologies and Standardization (Springer, Berlin, 2024), pp. 71–96
G. Li, W. Gao, W. Gao, Quantization techniques, in Point Cloud Compression: Technologies and Standardization (Springer, Berlin, 2024), pp. 97–112
G. Li, W. Gao, W. Gao, Entropy coding, in Point Cloud Compression: Technologies and Standardization (Springer, Berlin, 2024), pp. 113–133
G. Li, W. Gao, W. Gao, MPEG geometry-based point cloud compression (G-PCC) standard, in Point Cloud Compression: Technologies and Standardization (Springer, Berlin, 2024), pp. 135–165
G. Li, W. Gao, W. Gao, AVS point cloud compression standard, in Point Cloud Compression: Technologies and Standardization (Springer, Berlin, 2024), pp. 167–197
G. Li, W. Gao, W. Gao, MPEG video-based point cloud compression (V-PCC) standard, in Point Cloud Compression: Technologies and Standardization (Springer, Berlin, 2024), pp. 199–218
G. Li, W. Gao, W. Gao, MPEG AI-based 3d graphics coding standard, in Point Cloud Compression: Technologies and Standardization (Springer, Berlin, 2024), pp. 219–241
G. Li, W. Gao, W. Gao, Future work, in Point Cloud Compression: Technologies and Standardization (Springer, Berlin, 2024), pp. 243–250
W. Gao, H. Ye, G. Li, H. Zheng, Y. Wu, L. Xie, OpenPointCloud: an open-source algorithm library of deep learning based point cloud compression, in ACM International Conference on Multimedia (2022), pp. 7347–7350
W. Liu, W. Gao, X. Mu, Fast inter-frame motion prediction for compressed dynamic point cloud attribute enhancement. Proc. AAAI Conf. Artif. Intell. 38(4), 3720–3728 (2024)
Z. Yang, W. Gao, X. Lu, DANet: density-adaptive network for geometry-based point cloud compression artifacts removal, in 2023 IEEE International Conference on Visual Communications and Image Processing (VCIP) (IEEE, Piscataway, 2023), pp. 1–5
X. Fan, G. Li, D. Li, Y. Ren, W. Gao, T.H. Li, Deep geometry post-processing for decompressed point clouds, in 2022 IEEE International Conference on Multimedia and Expo (ICME) (IEEE, Piscataway, 2022), pp. 1–6
X. Zhang, G. Liao, W. Gao, G. Li, TDRNet: transformer-based dual-branch restoration network for geometry based point cloud compression artifacts, in 2022 IEEE International Conference on Multimedia and Expo (ICME) (IEEE, Piscataway, 2022), pp. 1–6
Z. Li, G. Li, T.H. Li, S. Liu, W. Gao, Semantic point cloud upsampling. IEEE Trans. Multimedia 25, 3432–3442 (2023)
R. Zhang, W. Gao, G. Li, T.H. Li, QINet: decision surface learning and adversarial enhancement for quasi-immune completion of diverse corrupted point clouds. IEEE Trans. Geosci. Remote Sens. 60, 1–14 (2022)
R. Bao, Y. Ren, G. Li, W. Gao, S. Liu, Flow-based point cloud completion network with adversarial refinement, in ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, Piscataway, 2022), pp. 2559–2563
J. Chen, G. Li, R. Zhang, T.H. Li, W. Gao, PointIVAE: invertible variational autoencoder framework for 3d point cloud generation, in 2022 IEEE International Conference on Image Processing (ICIP) (IEEE, Piscataway, 2022), pp. 3216–3220
R. Zhang, J. Chen, W. Gao, G. Li, T.H. Li, PointOT: interpretable geometry-inspired point cloud generative model via optimal transport. IEEE Trans. Circuits Syst. Video Technol. 32(10), 6792–6806 (2022)
S. Fan, W. Gao, Screen-based 3d subjective experiment software, in Proceedings of the 31st ACM International Conference on Multimedia (2023), pp. 9672–9675
X. Mao, H. Yuan, X. Lu, R. Hamzaoui, W. Gao, PCAC-GAN: a sparse-tensor-based generative adversarial network for 3d point cloud attribute compression. Comput. Visual Media (2024)
J. Wang, W. Gao, G. Li, Applying collaborative adversarial learning to blind point cloud quality measurement. IEEE Trans. Instrum. Measure. 72, 1–15 (2023)
Y. Zhang, W. Gao, G. Li, OpenPointCloud-V2: a deep learning based open-source algorithm library of point cloud processing, in Proceedings of the 1st International Workshop on Advances in Point Cloud Compression, Processing and Analysis (2022), pp. 51–55
S. Fan, W. Gao, G. Li, Salient object detection for point clouds, in European Conference on Computer Vision (2022), pp. 1–19
S. Luo, W. Gao, A general framework for rotation invariant point cloud analysis, in ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, Piscataway, 2024), pp. 3665–3669
X. Lu, W. Gao, AttentiveNet: detecting small objects for lidar point clouds by attending to important points, in 2023 IEEE International Conference on Visual Communications and Image Processing (VCIP) (IEEE, Piscataway, 2023), pp. 1–5
Z. Pan, N. Zhang, W. Gao, S. Liu, G. Li, Less is more: label recommendation for weakly supervised point cloud semantic segmentation. Proc. AAAI Conf. Artif. Intell. 38(5) 4397–4405 (2024)
Z. Pan, G. Liu, W. Gao, T. Li, EPContrast: effective point-level contrastive learning for large-scale point cloud understanding, in 2024 IEEE International Conference on Multimedia and Expo (ICME) (IEEE, Piscataway, 2024)
N. Zhang, Z. Pan, T.H. Li, W. Gao, G. Li, Improving graph representation for point cloud segmentation via attentive filtering, in Proceedings of the IEEE/CVF conference on computer vision and pattern recognition (2023), pp. 1244–1254
K. Wen, N. Zhang, G. Li, W. Gao, MPVNN: multi-resolution point-voxel non-parametric network for 3d point cloud processing, in 2024 IEEE International Conference on Multimedia and Expo (ICME) (IEEE, Piscataway, 2024)
D. Yang, W. Gao, G. Li, H. Yuan, J. Hou, S. Kwong, Exploiting manifold feature representation for efficient classification of 3d point clouds. ACM Trans. Multimedia Comput. Commun. Appl. 19(1s), 1–21 (2023)
M.A. Uy, G.H. Lee, PointNetVLAD: deep point cloud based retrieval for large-scale place recognition, in IEEE Conference on Computer Vision and Pattern Recognition (2018), pp. 4470–4479
J. Komorowski, MinkLoc3D: point cloud based large-scale place recognition, in IEEE Winter Conference on Applications of Computer Vision (2021), pp. 1789–1798
L. Hui, H. Yang, M. Cheng, J. Xie, J. Yang, Pyramid point cloud transformer for large-scale place recogition, in IEEE Conference on Computer Vision and Pattern Recognition (2021), pp. 6078–6087
R. Zhang, G. Li, W. Gao, T.H. Li, Compoint: can complex-valued representation benefit point cloud place recognition? IEEE Trans. Intell. Transport. Syst. 25(7), 7494–7507 (2024)
S.B. Hegde, S. Gangisetty, An evaluation of feature encoding techniques for non-rigid and rigid 3d point cloud retrieval, in British Machine Vision Conference (2019), p. 47
W. Zhang, C. Xiao, PCAN: 3d attention map learning using contextual information for point cloud based retrieval, in IEEE Conference on Computer Vision and Pattern Recognition (2019), pp. 12 436–12 445
Q. Sun, H. Liu, J. He, Z. Fan, X. Du, DAGC: employing dual attention and graph convolution for point cloud based place recognition, in International Conference on Multimedia Retrieval (2020), pp. 224–232
C.R. Qi, H. Su, K. Mo, L.J. Guibas, PointNet: deep learning on point sets for 3D classification and segmentation, in IEEE Conference on Computer Vision and Pattern Recognition (2017), pp. 77–85
C. Choy, J. Gwak, S. Savarese, 4d spatio-temporal convnets: minkowski convolutional neural networks, in IEEE Conference on Computer Vision and Pattern Recognition (2019), pp. 3075–3084
F. Radenovic, G. Tolias, O. Chum, Fine-tuning CNN image retrieval with no human annotation. IEEE Trans. Pattern Anal. Mach. Intell. 41(7), 1655–1668 (2019)
T. Lin, P. Dollár, R.B. Girshick, K. He, B. Hariharan, S.J. Belongie, Feature pyramid networks for object detection, in IEEE Conference on Computer Vision and Pattern Recognition (IEEE Computer Society, Washington, 2017), pp. 936–944
J. Komorowski, M. Wysoczanska, T. Trzcinski, Minkloc++: Lidar and monocular image fusion for place recognition, in International Joint Conference on Neural Networks (IEEE, Piscataway, 2021), pp. 1–8
Q. Wang, B. Wu, P. Zhu, P. Li, W. Zuo, Q. Hu, ECA-Net: efficient channel attention for deep convolutional neural networks, in IEEE Conference on Computer Vision and Pattern Recognition (2020), pp. 11 531–11 539
W. Maddern, G. Pascoe, C. Linegar, P. Newman, 1 year, 1000 km: the Oxford robotcar dataset. Int. J. Robot. Res. 36(1), 3–15 (2017)
X. Huang, G. Mei, J. Zhang, R. Abbas, A comprehensive survey on point cloud registration. CoRR, vol. abs/2103.02690, 2021. [Online]. Available: https://arxiv.org/abs/2103.02690
P.J. Besl, n.d. McKay, A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)
L. Cheng, S. Chen, X. Liu, H. Xu, Y. Wu, M. Li, Y. Chen, Registration of laser scanning point clouds: a review. Sensors 18(5), 1641 (2018)
H.M. Le, T. Do, T. Hoang, N. Cheung, SDRSAC: semidefinite-based randomized approach for robust point cloud registration without correspondences, in IEEE Conference on Computer Vision and Pattern Recognition (2019), pp. 124–133
F. Pomerleau, F. Colas, R. Siegwart, A review of point cloud registration algorithms for mobile robotics, Found. Trends Robot. 4(1), 1–104 (2015)
H. Yang, L. Carlone, A polynomial-time solution for robust registration with extreme outlier rates, in Robotics: Science and Systems XV, University of Freiburg, Freiburg im Breisgau, June 22–26, 2019, ed. by A. Bicchi, H. Kress-Gazit, S. Hutchinson (2019)
H. Deng, T. Birdal, S. Ilic, PPFNet: Global context aware local features for robust 3d point matching, in IEEE Conference on Computer Vision and Pattern Recognition (2018), pp. 195–205
Z. Gojcic, C. Zhou, J.D. Wegner, A. Wieser, The perfect match: 3d point cloud matching with smoothed densities, in IEEE Conference on Computer Vision and Pattern Recognition (2019), pp. 5545–5554
A. Zeng, S. Song, M. Nießner, M. Fisher, J. Xiao, T.A. Funkhouser, 3DMatch: learning local geometric descriptors from RGB-D reconstructions, in IEEE Conference on Computer Vision and Pattern Recognition (2017), pp. 199–208
G. Elbaz, T. Avraham, A. Fischer, 3d point cloud registration for localization using a deep neural network auto-encoder, in IEEE Conference on Computer Vision and Pattern Recognition (2017), pp. 2472–2481
W. Lu, G. Wan, Y. Zhou, X. Fu, P. Yuan, S. Song, DeepVCP: an end-to-end deep neural network for point cloud registration, in IEEE/CVF International Conference on Computer Vision (IEEE, Piscataway, 2019), pp. 12–21
Z. Yang, J.Z. Pan, L. Luo, X. Zhou, K. Grauman, Q. Huang, Extreme relative pose estimation for RGB-D scans via scene completion, in IEEE Conference on Computer Vision and Pattern Recognition (2019), pp. 4531–4540
X. Huang, L. Fan, Q. Wu, J. Zhang, C. Yuan, Fast registration for cross-source point clouds by using weak regional affinity and pixel-wise refinement, in IEEE International Conference on Multimedia and Expo (2019), pp. 1552–1557
X. Huang, J. Zhang, L. Fan, Q. Wu, C. Yuan, A systematic approach for cross-source point cloud registration by preserving macro and micro structures. IEEE Trans. Image Proces. 26(7), 3261–3276 (2017)
X. Huang, J. Zhang, Q. Wu, L. Fan, C. Yuan, A coarse-to-fine algorithm for registration in 3d street-view cross-source point clouds, in International Conference on Digital Image Computing: Techniques and Applications (2016), pp. 1–6
X. Huang, G. Mei, J. Zhang, Feature-metric registration: a fast semi-supervised approach for robust point cloud registration without correspondences, in 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020, Seattle, WA, June 13–19, 2020 (Computer Vision Foundation/IEEE, Piscataway, 2020), pp. 11 363–11 371
Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, J. Xiao, 3D ShapeNets: a deep representation for volumetric shapes, in IEEE Conference on Computer Vision and Pattern Recognition (IEEE Computer Society, Washington, 2015), pp. 1912–1920
A. Geiger, P. Lenz, C. Stiller, R. Urtasun, Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)
A. Geiger, P. Lenz, R. Urtasun, Are we ready for autonomous driving? The KITTI vision benchmark suite, in IEEE Conference on Computer Vision and Pattern Recognition (2012), pp. 3354–3361
Y. Zhou, O. Tuzel, VoxelNet: end-to-end learning for point cloud based 3d object detection, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018), pp. 4490–4499
M. Bijelic, T. Gruber, F. Mannan, F. Kraus, W. Ritter, K. Dietmayer, F. Heide, Seeing through fog without seeing fog: deep multimodal sensor fusion in unseen adverse weather, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020), pp. 11 682–11 692
J.H. Yoo, Y. Kim, J. Kim, J.W. Choi, 3D-CVF: generating joint camera and lidar features using cross-view spatial feature fusion for 3d object detection, in European Conference on Computer Vision (2020), pp. 720–736
L. Xie, G. Xu, D. Cai, X. He, X-view: non-egocentric multi-view 3d object detector. IEEE Trans. Image Proces. 32, 1488–1497 (2023)
K. Huang, B. Shi, X. Li, X. Li, S. Huang, Y. Li, Multi-modal sensor fusion for auto driving perception: a survey. Preprint. arXiv:2202.02703 (2022)
S. Vora, A. H. Lang, B. Helou, O. Beijbom, Pointpainting: sequential fusion for 3d object detection, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020), pp. 4604–4612
L. Xie, C. Xiang, Z. Yu, G. Xu, Z. Yang, D. Cai, X. He, PI-RCNN: an efficient multi-sensor 3d object detector with point-based attentive cont-conv fusion module. Proc. AAAI Conf. Artif. Intell. 34(07), 12 460–12 467 (2020)
T. Huang, Z. Liu, X. Chen, X. Bai, EPNet: enhancing point features with image semantics for 3d object detection, in European Conference on Computer Vision (2020), pp. 35–52
M. Liang, B. Yang, S. Wang, R. Urtasun, Deep continuous fusion for multi-sensor 3d object detection, in Proceedings of the European Conference on Computer Vision (2018), pp. 641–656
S. Pang, D. Morris, H. Radha, CLOCs: camera-lidar object candidates fusion for 3d object detection, in IEEE/RSJ International Conference on Intelligent Robots and Systems (2020), pp. 10 386–10 393
C.R. Qi, W. Liu, C. Wu, H. Su, L.J. Guibas, Frustum pointnets for 3d object detection from RGB-D data, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2018), pp. 918–927
P. Sun, H. Kretzschmar, X. Dotiwalla, A. Chouard, V. Patnaik, P. Tsui, J. Guo, Y. Zhou, Y. Chai, B. Caine, et al., Scalability in perception for autonomous driving: Waymo open dataset, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020), pp. 2446–2454
H. Caesar, V. Bankiti, A.H. Lang, S. Vora, V.E. Liong, Q. Xu, A. Krishnan, Y. Pan, G. Baldan, O. Beijbom, nuScenes: a multimodal dataset for autonomous driving, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2020), pp. 11 621–11 631
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Gao, W., Li, G. (2025). Deep-Learning-Based Point Cloud Analysis II. In: Deep Learning for 3D Point Clouds. Springer, Singapore. https://doi.org/10.1007/978-981-97-9570-3_6
Download citation
DOI: https://doi.org/10.1007/978-981-97-9570-3_6
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-9569-7
Online ISBN: 978-981-97-9570-3
eBook Packages: Computer ScienceComputer Science (R0)