Abstract
This chapter delves into the realm of point cloud technologies, emphasizing the significance of open-source projects and frameworks in advancing this field. The central focus is on the OpenPointCloud library, an open-source repository that encompasses a variety of deep learning methods for point cloud compression, processing, and analysis. This library utilizes popular deep learning frameworks such as TensorFlow, PyTorch, and MXNet, offering a robust platform for developers and researchers to engage in innovative point cloud applications. The evolution of point cloud technologies and its increasing relevance across various industries are also highlighted, driven by the growing availability of open-source tools and collaborative platforms that foster innovation and enhance research capabilities. The OpenPointCloud library serves as a pivotal resource, facilitating the development and testing of advanced algorithms and contributing significantly to the open-source community. This initiative not only enriches the diversity and availability of tools but also propels the forward momentum of research in point cloud technologies, underscoring the critical role of open-source projects in the technological landscape.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Notes
- 1.
- 2.
Trustie, funded by the Ministry of Science and Technology, is an open-source platform and community jointly initiated and constructed by a number of well-known universities, scientific research institutions, and software enterprises around the clustering method of software development in the network era. Trustie is committed to systematically researching new software development methods and providing method guidance and practice guide for the construction of open source ecology. Website: https://www.trustie.net.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
References
W. Gao, G. Li, H. Yuan, R. Hamzaoui, Z. Li, S. Liu, Apccpa’22: 1st international workshop on advances in point cloud compression, processing and analysis, in Proceedings of the 30th ACM International Conference on Multimedia (2022), pp. 7392–7393
T. Qin, G. Li, W. Gao, S. Liu, Multi-grained point cloud geometry compression via dual-model prediction with extended octree, in ACM Transactions on Multimedia Computing, Communications, and Applications (2024)
Y. Shao, W. Gao, S. Liu, G. Li, Advanced patch-based affine motion estimation for dynamic point cloud geometry compression. Sensors 24(10), 3142 (2024)
Y. Shao, F. Song, W. Gao, S. Liu, G. Li, Texture-guided graph transform optimization for point cloud attribute compression. Appl. Sci. 14(10), 4094 (2024)
Y. Shao, X. Yang, W. Gao, S. Liu, G. Li, 3d point cloud attribute compression using diffusion-based texture-aware intra prediction, in IEEE Transactions on Circuits and Systems for Video Technology (2024)
J. Zhang, Y. Chen, G. Liu, W. Gao, G. Li, Efficient point cloud attribute compression framework using attribute-guided graph Fourier transform, in ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, Piscataway, 2024), pp. 8426–8430
W. Gao, H. Yuan, G. Li, Z. Li, H. Yuan, Low complexity coding unit decision for video-based point cloud compression. IEEE Trans. Image Proc. 33, 149–162 (2023)
Y. Shao, G. Li, Q. Zhang, W. Gao, S. Liu, Non-rigid registration-based progressive motion compensation for point cloud geometry compression. IEEE Trans. Geosci. Remote Sensing (2023)
F. Song, G. Li, X. Yang, W. Gao, S. Liu, Block-adaptive point cloud attribute coding with region-aware optimized transform. IEEE Trans. Circuits Syst. Video Technol. 33, 4294–4308 (2023)
Y. An, Y. Shao, G. Li, W. Gao, S. Liu, A fast motion estimation method with hamming distance for LiDAR point cloud compression, in 2022 IEEE International Conference on Visual Communications and Image Processing (VCIP) (IEEE, Piscataway, 2022), pp. 1–5
H. Yuan, W. Gao, G. Li, Z. Li, Rate-distortion-guided learning approach with cross-projection information for V-PCC fast CU decision, in Proceedings of the 30th ACM International Conference on Multimedia (2022), pp. 3085–3093
F. Song, G. Li, W. Gao, T.H. Li, Rate-distortion optimized graph for point cloud attribute coding. IEEE Signal Process. Lett. 29, 922–926 (2022)
F. Song, G. Li, X. Yang, W. Gao, T.H. Li, Fine-grained correlation representation for graph-based point cloud attribute compression, in 2022 IEEE International Conference on Multimedia and Expo (ICME) (IEEE, Piscataway, 2022), pp. 1–6
F. Shen, W. Gao, A rate control algorithm for video-based point cloud compression, in 2021 International Conference on Visual Communications and Image Processing (VCIP) (IEEE, Piscataway, 2021), pp. 1–5
F. Song, Y. Shao, W. Gao, H. Wang, T. Li, Layer-wise geometry aggregation framework for lossless LiDAR point cloud compression. IEEE Trans. Circuits Syst. Video Technol. 31(12), 4603–4616 (2021)
L. Xie, W. Gao, H. Zheng, G. Li, Spcgc: scalable point cloud geometry compression for machine vision, in Proceedings of IEEE International Conference on Robotics and Automation (2024)
L. Xie, W. Gao, H. Zheng, H. Ye, Semantic-aware visual decomposition for point cloud geometry compression, in 2024 Data Compression Conference (DCC) (IEEE, Piscataway, 2024), pp. 595–595
Z. Qi, W. Gao, Variable-rate point cloud geometry compression based on feature adjustment and interpolation, in 2024 Data Compression Conference (DCC) (IEEE, Piscataway, 2024), pp. 63–72
Z. Yu, W. Gao, When dynamic neural network meets point cloud compression: computation-aware variable rate and checkerboard context, in 2024 Data Compression Conference (DCC) (IEEE, Piscataway, 2024), p. 600
L. Xie, W. Gao, S. Fan, Z. Yao, Pdnet: parallel dual-branch network for point cloud geometry compression and analysis, in 2024 Data Compression Conference (DCC) (IEEE, Piscataway, 2024), p. 596
L. Xie, W. Gao, H. Zheng, End-to-end point cloud geometry compression and analysis with sparse tensor, in Proceedings of the 1st International Workshop on Advances in Point Cloud Compression, Processing and Analysis (2022), pp. 27–32
C. Fu, G. Li, R. Song, W. Gao, S. Liu, OctAttention: octree-based large-scale contexts model for point cloud compression, in AAAI Conference on Artificial Intelligence (2022), pp. 625–633
S. Fan, W. Gao, Screen-based 3d subjective experiment software, in Proceedings of the 31st ACM International Conference on Multimedia (2023), pp. 9672–9675
W. Liu, W. Gao, X. Mu, Fast inter-frame motion prediction for compressed dynamic point cloud attribute enhancement, in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, no. 4 (2024), pp. 3720–3728
Z. Yang, W. Gao, X. Lu, Danet: density-adaptive network for geometry-based point cloud compression artifacts removal, in 2023 IEEE International Conference on Visual Communications and Image Processing (VCIP) (IEEE, Piscataway, 2023), pp. 1–5
X. Fan, G. Li, D. Li, Y. Ren, W. Gao, T.H. Li, Deep geometry post-processing for decompressed point clouds, in 2022 IEEE International Conference on Multimedia and Expo (ICME) (IEEE, Piscataway, 2022), pp. 1–6
X. Zhang, G. Liao, W. Gao, G. Li, Tdrnet: Transformer-based dual-branch restoration network for geometry based point cloud compression artifacts, in 2022 IEEE International Conference on Multimedia and Expo (ICME) (IEEE, Piscataway, 2022), pp. 1–6
Z. Li, G. Li, T.H. Li, S. Liu, W. Gao, Semantic point cloud upsampling. IEEE Trans. Multimedia 25, 3432–3442 (2022)
R. Zhang, W. Gao, G. Li, T.H. Li, Qinet: decision surface learning and adversarial enhancement for quasi-immune completion of diverse corrupted point clouds. IEEE Trans. Geosci. Remote Sensing 60, 1–14 (2022)
R. Bao, Y. Ren, G. Li, W. Gao, S. Liu, Flow-based point cloud completion network with adversarial refinement, in ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, Piscataway, 2022), pp. 2559–2563
J. Chen, G. Li, R. Zhang, T.H. Li, W. Gao, Pointivae: invertible variational autoencoder framework for 3d point cloud generation, in 2022 IEEE International Conference on Image Processing (ICIP) (IEEE, Piscataway, 2022), pp. 3216–3220
R. Zhang, J. Chen, W. Gao, G. Li, T.H. Li, Pointot: interpretable geometry-inspired point cloud generative model via optimal transport. IEEE Trans. Circuits Syst. Video Technol. 32(10), 6792–6806 (2022)
S. Fan, W. Gao, G. Li, Salient object detection for point clouds, in European Conference on Computer Vision (2022), pp. 1–19
S. Luo, W. Gao, A general framework for rotation invariant point cloud analysis, in ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, Piscataway, 2024), pp. 3665–3669
X. Lu and W. Gao, Attentivenet: detecting small objects for LiDAR point clouds by attending to important points, in 2023 IEEE International Conference on Visual Communications and Image Processing (VCIP) (IEEE, Piscataway, 2023), pp. 1–5
Z. Pan, N. Zhang, W. Gao, S. Liu, G. Li, Less is more: label recommendation for weakly supervised point cloud semantic segmentation, in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, no. 5 (2024), pp. 4397–4405
Z. Pan, G. Liu, W. Gao, T. Li, Epcontrast: effective point-level contrastive learning for large-scale point cloud understanding, in 2024 IEEE International Conference on Multimedia and Expo (ICME) (IEEE, Piscataway, 2024)
N. Zhang, Z. Pan, T.H. Li, W. Gao, G. Li, Improving graph representation for point cloud segmentation via attentive filtering, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2023), pp. 1244–1254
K. Wen, N. Zhang, G. Li, W. Gao, MPVNN: multi-resolution point-voxel non-parametric network for 3d point cloud processing, in 2024 IEEE International Conference on Multimedia and Expo (ICME) (IEEE, Piscataway, 2024)
X. Mao, H. Yuan, X. Lu, R. Hamzaoui, W. Gao, PCAC-GAN: a sparse-tensor-based generative adversarial network for 3d point cloud attribute compression. Computational Visual Media (2024)
J. Wang, W. Gao, G. Li, Applying collaborative adversarial learning to blind point cloud quality measurement. IEEE Trans. Instrument. Measur. (2023)
D. Yang, W. Gao, G. Li, H. Yuan, J. Hou, S. Kwong, Exploiting manifold feature representation for efficient classification of 3d point clouds. ACM Trans. Multimedia Comput. Commun. Appl. 19(1s), 1–21 (2023)
H. Zheng, W. Gao, Z. Yu, T. Zhao, G. Li, Viewpcgc: view-guided learned point cloud geometry compression, in Proceedings of the 32nd ACM International Conference on Multimedia (2024)
L. Xie, W. Gao, H. Zheng, G. Li, Roi-guided point cloud geometry compression towards human and machine vision, in Proceedings of the 32nd ACM International Conference on Multimedia (2024)
C. Peng, W. Gao, Laplacian matrix learning for point cloud attribute compression with ternary search-based adaptive block partition, in Proceedings of the 32nd ACM International Conference on Multimedia (2024)
S. Luo, B. Qu, W. Gao, Learning robust 3d representation from clip via dual denoising (2024). arXiv preprint arXiv:2407.00905
G. Li, G. Wei, W. Gao, Point Cloud Compression: Technologies and Standardization (Springer, Berlin, 2024)
G. Li, W. Gao, W. Gao, Introduction, in Point Cloud Compression: Technologies and Standardization (Springer, Berlin, 2024), pp. 1–28
G. Li, W. Gao, W. Gao, Background knowledge, in Point Cloud Compression: Technologies and Standardization (Springer, Berlin, 2024), pp. 29–51
G. Li, W. Gao, W. Gao, Predictive coding, in Point Cloud Compression: Technologies and Standardization (Springer, Berlin, 2024), pp. 53–70
G. Li, W. Gao, W. Gao, Transform coding, in Point Cloud Compression: Technologies and Standardization (Springer, Berlin, 2024), pp. 71–96
G. Li, W. Gao, W. Gao, Quantization techniques, in Point Cloud Compression: Technologies and Standardization (Springer, Berlin, 2024), pp. 97–112
G. Li, W. Gao, W. Gao, Entropy coding, in Point Cloud Compression: Technologies and Standardization (Springer, Berlin, 2024), pp. 113–133
G. Li, W. Gao, W. Gao, MPEG geometry-based point cloud compression (G-PCC) standard, in Point Cloud Compression: Technologies and Standardization (Springer, Berlin, 2024), pp. 135–165
G. Li, W. Gao, W. Gao, AVS point cloud compression standard, in Point Cloud Compression: Technologies and Standardization (Springer, Berlin, 2024), pp. 167–197
G. Li, W. Gao, W. Gao, MPEG video-based point cloud compression (V-PCC) standard, in Point Cloud Compression: Technologies and Standardization (Springer, Berlin, 2024), pp. 199–218
G. Li, W. Gao, W. Gao, MPEG Ai-based 3d graphics coding standard, in Point Cloud Compression: Technologies and Standardization (Springer, Berlin, 2024), pp. 219–241
G. Li, W. Gao, W. Gao, Future work, in Point Cloud Compression: Technologies and Standardization (Springer, Berlin, 2024), pp. 243–250
W. Gao, H. Ye, G. Li, H. Zheng, Y. Wu, L. Xie, OpenPointCloud: an open-source algorithm library of deep learning based point cloud compression, in ACM International Conference on Multimedia (2022), pp. 7347–7350
Y. Zhang, W. Gao, G. Li, Openpointcloud-v2: a deep learning based open-source algorithm library of point cloud processing, in Proceedings of the 1st International Workshop on Advances in Point Cloud Compression, Processing and Analysis (2022), pp. 51–55
W. Gao, H. Yuan, Y. Guo, L. Tao, Z. Cai, G. Li, OpenHardwareVC: an open source library for 8k UHD video coding hardware implementation, in Proceedings of the 30th ACM International Conference on Multimedia (2022), pp. 7339–7342
H. Yuan, W. Gao, Openfastvc: an open source library for video coding fast algorithm implementation, in Proceedings of the 31st ACM International Conference on Multimedia (2023), pp. 9660–9663
J.-X. Zhuang, X. Huang, Y. Yang, J. Chen, Y. Yu, W. Gao, G. Li, J. Chen, T. Zhang, Openmedia: open-source medical image analysis toolbox and benchmark under heterogeneous ai computing platforms, in Chinese Conference on Pattern Recognition and Computer Vision (PRCV) (Springer, Berlin, 2022), pp. 356–367
W. Gao, S. Sun, H. Zheng, Y. Wu, H. Ye, Y. Zhang, Opendmc: an open-source library and performance evaluation for deep-learning-based multi-frame compression, in Proceedings of the 31st ACM International Conference on Multimedia (2023), pp. 9685–9688
M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G.S. Corrado, A. Davis, J. Dean, M. Devin et al., Tensorflow: large-scale machine learning on heterogeneous distributed systems (2016). arXiv preprint arXiv:1603.04467
A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga et al., Pytorch: an imperative style, high-performance deep learning library, in Advances in Neural Information Processing Systems, vol. 32 (2019), pp. 8026–8037
T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang, T. Xiao, B. Xu, C. Zhang, Z. Zhang, Mxnet: a flexible and efficient machine learning library for heterogeneous distributed systems (2015). arXiv preprint arXiv:1512.01274
R.B. Rusu, S. Cousins, 3d is here: Point cloud library (PCL), in 2011 IEEE International Conference on Robotics and Automation (2011), pp. 1–4
Q.-Y. Zhou, J. Park, V. Koltun, Open3D: a modern library for 3D data processing (2018). arXiv:1801.09847
K. Zampogiannis, C. Fermuller, Y. Aloimonos, Cilantro: a lean, versatile, and efficient library for point cloud data processing, in Proceedings of the 26th ACM International Conference on Multimedia (2018), pp. 1364–1367
H. Butler, B. Chambers, P. Hartzell, C. Glennie, PDAL: an open source library for the processing and analysis of point clouds. Comput. Geosci. 148, 104680 (2021)
M. Krivokuca, P.A. Chou, P. Savill, 8i voxelized surface light field (8iVSLF) dataset. ISO/IEC JTC1/SC29/WG11 MPEG, input document m42914 (2018)
A.X. Chang, T. Funkhouser, L. Guibas, P. Hanrahan, Q. Huang, Z. Li, S. Savarese, M. Savva, S. Song, H. Su et al., Shapenet: an information-rich 3d model repository (2015). arXiv preprint arXiv:1512.03012
Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, J. Xiao, 3D ShapeNets: a deep representation for volumetric shapes, in IEEE Conference on Computer Vision and Pattern Recognition (2015), pp. 1912–1920
I. Armeni, O. Sener, A.R. Zamir, H. Jiang, I. Brilakis, M. Fischer, S. Savarese, 3D semantic parsing of large-scale indoor spaces, in IEEE Conference on Computer Vision and Pattern Recognition (2016), pp. 1534–1543
A. Dai, A. X. Chang, M. Savva, M. Halber, T.A. Funkhouser, M. Nießner, ScanNet: richly-annotated 3d reconstructions of indoor scenes, in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2017), pp. 2432–2443
S. Agarwal, A. Vora, G. Pandey, W. Williams, H. Kourous, J. McBride, Ford multi-AV seasonal dataset. Int. J. Robot. Res. 39(12), 1367–1376 (2020)
A. Geiger, P. Lenz, R. Urtasun, Are we ready for autonomous driving? The KITTI vision benchmark suite, in IEEE Conference on Computer Vision and Pattern Recognition (2012), pp. 3354–3361
J. Behley, M. Garbade, A. Milioto, J. Quenzel, S. Behnke, C. Stachniss, J. Gall, SemanticKITTI: a dataset for semantic scene understanding of LiDAR sequences, in IEEE/CVF International Conference on Computer Vision (2019), pp. 9296–9306
C. Lai, J. Han, H. Dong, Tensorlayer 3.0: a deep learning library compatible with multiple backends, in IEEE International Conference on Multimedia and Expo Workshops (2021), pp. 1–3
J. Wang, H. Zhu, H. Liu, Z. Ma, Lossy point cloud geometry compression via end-to-end learning. IEEE Trans. Circuits Syst. Video Technol. 31(12), 4909–4923 (2021)
J. Wang, D. Ding, Z. Li, Z. Ma, Multiscale point cloud geometry compression, in Data Compression Conference (2021), pp. 73–82
D.T. Nguyen, M. Quach, G. Valenzise, P. Duhamel, Learning-based lossless compression of 3d point cloud geometry, in IEEE International Conference on Acoustics, Speech and Signal Processing (2021), pp. 4220–4224
L. Yu, X. Li, C. Fu, D. Cohen-Or, P. Heng, PU-net: point cloud upsampling network, in Proceedings of IEEE Conference on Computer Vision and Pattern Recognition (2018), pp. 2790–2799
Z. Li, G. Li, T.H. Li, S. Liu, W. Gao, Semantic point cloud upsampling. IEEE Trans. Multimedia 25, 3432–3442 (2023)
W. Yan, R. Zhang, J. Wang, S. Liu, T.H. Li, G. Li, Vaccine-style-net: point cloud completion in implicit continuous function space, in Proceedings of the 28th ACM International Conference on Multimedia (2020), pp. 2067–2075
S. Fan, W. Gao, G. Li, Salient object detection for point clouds, in European Conference on Computer Vision (2022), pp. 1–19
C.R. Qi, H. Su, K. Mo, L.J. Guibas, Pointnet: deep learning on point sets for 3d classification and segmentation, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2017), pp. 652–660
R. Li, X. Li, C. Fu, D. Cohen-Or, P. Heng, PU-GAN: a point cloud upsampling adversarial network, in Proceedings of the IEEE International Conference on Computer Vision (2019), pp. 7202–7211
G. Qian, A. Abualshour, G. Li, A.K. Thabet, B. Ghanem, PU-GCN: point cloud upsampling using graph convolutional networks, in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2021), pp. 11683–11692
C.R. Qi, L. Yi, H. Su, L.J. Guibas, Pointnet\(++\): deep hierarchical feature learning on point sets in a metric space. Adv. Neural Inform. Process. Syst. 30, 5099–5108 (2017)
B. Qu, X. Liang, S. Sun, W. Gao, Exploring AIGC video quality: a focus on visual harmony, video-text consistency and domain distribution gap, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2024)
B. Qu, H. Li, W. Gao, Bringing textual prompt to ai-generated image quality assessment, in 2024 IEEE International Conference on Multimedia and Expo (ICME) (IEEE, Piscataway, 2024)
Y. Wu, L. Xie, S. Sun, W. Gao, Y. Yan, Adaptive intra period size for deep learning-based screen content video coding, in 2024 IEEE International Conference on Multimedia and Expo Workshops (ICMEW) (IEEE, Piscataway, 2024)
H. Zheng, W. Gao, End-to-end RGB-D image compression via exploiting channel-modality redundancy, in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 38, no. 7 (2024), pp. 7562–7570
L. Tao, W. Gao, G. Li, C. Zhang, Adanic: towards practical neural image compression via dynamic transform routing, in Proceedings of the IEEE/CVF International Conference on Computer Vision (2023), pp. 16879–16888
Y. Wu, W. Gao, End-to-end lossless compression of high precision depth maps guided by pseudo-residual (2022). arXiv preprint arXiv:2201.03195
Y. Wu, Z. Qi, H. Zheng, L. Tao, W. Gao, Deep image compression with latent optimization and piece-wise quantization approximation, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (2021), pp. 1926–1930
W. Gao, L. Tao, L. Zhou, D. Yang, X. Zhang, Z. Guo, Low-rate image compression with super-resolution learning, in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (2020), pp. 154–155
Y. Guo, W. Gao, G. Li, Interpretable task-inspired adaptive filter pruning for neural networks under multiple constraints. Int. J. Comput. Vis. 132, 2060–2076 (2024)
W. Gao, Y. Guo, S. Ma, G. Li, S. Kwong, Efficient neural network compression inspired by compressive sensing. IEEE Trans. Neural Netw. Learn. Syst. 35(2), 1965–1979 (2024)
Y. Guo, W. Gao, Semantic-driven automatic filter pruning for neural networks, in 2022 IEEE International Conference on Multimedia and Expo (ICME) (IEEE, Piscataway, 2022), pp. 1–6
L. Tao, W. Gao, Efficient channel pruning based on architecture alignment and probability model bypassing, in 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (IEEE, Piscataway, 2021), pp. 3232–3237
Z. Yang, W. Gao, G. Li, Y. Yan, Sur-driven video coding rate control for jointly optimizing perceptual quality and buffer control. IEEE Trans. Image Process. 32, 5451–5464 (2023)
F. Shen, Z. Cai, W. Gao, An efficient rate control algorithm for intra frame coding in avs3, in 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (IEEE, Piscataway, 2021), pp. 3164–3169
H. Yuan, W. Gao, J. Wang, Dynamic computational resource allocation for fast inter frame coding in video conferencing applications, in 2021 IEEE International Conference on Multimedia and Expo (ICME) (IEEE, Piscataway, 2021), pp. 1–6
W. Gao, Q. Jiang, R. Wang, S. Ma, G. Li, S. Kwong, Consistent quality oriented rate control in HEVC via balancing intra and inter frame coding. IEEE Trans. Ind. Inform. 18(3), 1594–1604 (2021)
H. Yuan, W. Gao, A new coding unit partitioning mode for screen content video coding, in Proceedings of the 2021 5th International Conference on Digital Signal Processing (2021), pp. 66–72
W. Gao, On the performance evaluation of state-of-the-art rate control algorithms for practical video coding and transmission systems, in Proceedings of the 2020 4th International Conference on Video and Image Processing (2020), pp. 179–185
W. Gao, S. Kwong, Q. Jiang, C.-K. Fong, P.H. Wong, W.Y. Yuen, Data-driven rate control for rate-distortion optimization in HEVC based on simplified effective initial QP learning. IEEE Trans. Broadcasting 65(1), 94–108 (2018)
W. Gao, A multi-objective optimization perspective for joint consideration of video coding quality, in 2019 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC) (IEEE, Piscataway, 2019), pp. 986–991
W. Gao, S. Kwong, Y. Jia, Joint machine learning and game theory for rate control in high efficiency video coding. IEEE Trans. Image Process. 26(12), 6074–6089 (2017)
W. Gao, S. Kwong, Y. Zhou, H. Yuan, SSIM-based game theory approach for rate-distortion optimized intra frame CTU-level bit allocation. IEEE Trans. Multimedia 18(6), 988–999 (2016)
W. Gao, S. Kwong, H. Yuan, X. Wang, DCT coefficient distribution modeling and quality dependency analysis based frame-level bit allocation for HEVC. IEEE Trans. Circuits Syst. Video Technol. 26(1), 139–153 (2015)
W. Gao, S. Kwong, Phase congruency based edge saliency detection and rate control for perceptual image and video coding, in 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC) (IEEE, Piscataway, 2016), pp. 000264–000269
H. Yuan, W. Gao, S. Ma, Y. Yan, Divide-and-conquer-based RDO-free CU partitioning for 8k video compression. ACM Trans. Multimedia Comput. Commun. Appl. 20(4), 1–20 (2024)
L. Tao, W. Gao, A hardware implementation of entropy encoder for 8k video coding, in 2022 IEEE International Conference on Multimedia and Expo (ICME) (IEEE, Piscataway, 2022), pp. 1–6
Y. Guo, W. Gao, S. Ma, G. Li, Accelerating transform algorithm implementation for efficient intra coding of 8k UHD videos. ACM Trans. Multimedia Comput. Commun. Appl. 18(4), 1–20 (2022)
Z. Cai, W. Gao, Efficient fast algorithm and parallel hardware architecture for intra prediction of AVS3, in 2021 IEEE International Symposium on Circuits and Systems (ISCAS) (IEEE, Piscataway, 2021), pp. 1–5
W. Gao, H. Yuan, G. Liao, Z. Guo, J. Chen, Pp8k: a new dataset for 8k UHD video compression and processing. IEEE MultiMedia 30(3), 100–109 (2023)
W. Liu, W. Gao, G. Li, S. Ma, T. Zhao, H. Yuan, Enlarged motion-aware and frequency-aware network for compressed video artifact reduction. IEEE Trans. Circuits Syst. Video Technol. 34(10), 10339–10352 (2024)
X. Zang, W. Gao, G. Li, H. Fang, C. Ban, Z. He, H. Sun, A baseline investigation: transformer-based cross-view baseline for text-based person search, in Proceedings of the 31st ACM International Conference on Multimedia (2023), pp. 7737–7746
G. Liao, W. Gao, G. Li, J. Wang, S. Kwong, Cross-collaborative fusion-encoder network for robust RGB-thermal salient object detection. IEEE Trans. Circuits Syst. Video Technol. 32(11), 7646–7661 (2022)
W. Gao, G. Liao, S. Ma, G. Li, Y. Liang, W. Lin, Unified information fusion network for multi-modal RGB-D and RGB-T salient object detection. IEEE Trans. Circuits Syst. Video Technol. 32(4), 2091–2106 (2021)
Y. Chen, S. Sun, G. Li, W. Gao, T.H. Li, Closing the gap between theory and practice during alternating optimization for GANs. IEEE Trans. Neural Netw. Learn. Syst. 34(10), 14005–14017 (2024)
Y. Chen, C. Jin, G. Li, T.H. Li, W. Gao, Mitigating label noise in GANs via enhanced spectral normalization. IEEE Trans. Circuits Syst. Video Technol. 33(8), 3924–3934 (2023)
X. Zang, G. Li, W. Gao, Multidirection and multiscale pyramid in transformer for video-based pedestrian retrieval. IEEE Trans. Ind. Inform. 18(12), 8776–8785 (2022)
X. Zang, G. Li, W. Gao, X. Shu, Learning to disentangle scenes for person re-identification. Image Vis. Comput. 116, 104330 (2021)
X. Zang, G. Li, W. Gao, X. Shu, Exploiting robust unsupervised video person re-identification. IET Image Process. 16(3), 729–741 (2022)
Z. Yue, G. Li, W. Gao, Cross-level guided attention for human-object interaction detection, in 2023 IEEE International Conference on Multimedia and Expo Workshops (ICMEW) (IEEE, Piscataway, 2023), pp. 284–289
Z. Yao, W. Gao, Iterative saliency aggregation and assignment network for efficient salient object detection in optical remote sensing images. IEEE Trans. Geosci. Remote Sensing (2024)
Y. Sun, Z. Li, S. Wang, W. Gao, Depth-assisted calibration on learning-based factorization for a compressive light field display. Opt. Express 31(4), 5399–5413 (2023)
Y. Sun, Z. Li, L. Li, S. Wang, W. Gao, Optimization of compressive light field display in dual-guided learning, in ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, Piscataway, 2022), pp. 2075–2079
W. Gao, S. Fan, G. Li, W. Lin, A thorough benchmark and a new model for light field saliency detection. IEEE Trans. Pattern Anal. Mach. Intell. 45(7), 8003–8019 (2023)
Z. Li, G. Li, T. Li, S. Liu, W. Gao, Information-growth attention network for image super-resolution, in Proceedings of the 29th ACM International Conference on Multimedia (2021), pp. 544–552
L. Zhou, W. Gao, G. Li, H. Yuan, T. Zhao, G. Yue, Disentangled feature distillation for light field super-resolution with degradations, in 2023 IEEE International Conference on Multimedia and Expo Workshops (ICMEW) (IEEE, Piscataway, 2023), pp. 116–121
L. Zhou, W. Gao, G. Li, End-to-end spatial-angular light field super-resolution using parallax structure preservation strategy, in 2022 IEEE International Conference on Image Processing (ICIP) (IEEE, Piscataway, 2022), pp. 3396–3400
W. Gao, L. Zhou, L. Tao, A fast view synthesis implementation method for light field applications. ACM Trans. Multimedia Comput. Commun. Appl. 17(4), 1–20 (2021)
X. Zhang, W. Gao, G. Li, Q. Jiang, R. Cong, Image quality assessment–driven reinforcement learning for mixed distorted image restoration. ACM Trans. Multimedia Comput. Commun. Appl. 19(1s), 1–23 (2023)
X. Zhang, W. Gao, H. Yuan, G. Li, JE\({ }^{2}\)NET: joint exploitation and exploration in reinforcement learning based image restoration, in ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, Piscataway, 2022), pp. 2090–2094
X. Zhang, W. Gao, HIRL: hybrid image restoration based on hierarchical deep reinforcement learning via two-step analysis, in ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (IEEE, Piscataway, 2022), pp. 2445–2449
Z. Guo, W. Gao, H. Wang, J. Wang, S. Fan, No-reference deep quality assessment of compressed light field images, in 2021 IEEE International Conference on Multimedia and Expo (ICME) (IEEE, Piscataway, 2021), pp. 1–6
G. Liao and W. Gao, Rethinking feature mining for light field salient object detection. ACM Trans. Multimedia Comput. Commun. Appl. (2024)
S. Sun, J. Liu, T.H. Li, H. Li, G. Liu, W. Gao, Streamflow: streamlined multi-frame optical flow estimation for video sequences (2023). arXiv preprint arXiv:2311.17099
R. Liu, J. Huang, W. Gao, T.H. Li, G. Li, Mug-STAN: adapting image-language pretrained models for general video understanding (2023). arXiv preprint arXiv:2311.15075
C. Zhang, W. Gao, Learned rate control for frame-level adaptive neural video compression via dynamic neural network, in European Conference on Computer Vision (Springer, Berlin, 2024)
Author information
Authors and Affiliations
Rights and permissions
Copyright information
© 2025 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this chapter
Cite this chapter
Gao, W., Li, G. (2025). Open-Source Projects for 3D Point Clouds. In: Deep Learning for 3D Point Clouds. Springer, Singapore. https://doi.org/10.1007/978-981-97-9570-3_9
Download citation
DOI: https://doi.org/10.1007/978-981-97-9570-3_9
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-97-9569-7
Online ISBN: 978-981-97-9570-3
eBook Packages: Computer ScienceComputer Science (R0)