Abstract
The quality of underwater images can vary greatly due to the complexity of the underwater environment as well as the limitations of imaging devices. This can have an effect on the practical applications that are used in fields such as scientific research, the modern military, and other fields. As a result, attaining subjective quality assessment to differentiate distinct qualities of underwater photos plays a significant role in guiding subsequent tasks. In this study, an effective reference-free underwater image quality assessment metric is proposed by combining the colorfulness, contrast, sharpness, and high-level semantics cues while taking into account the underwater image degradation effect and human visual perception scheme. Specifically, we employ the low-level perceptual property-based method to characterize the image’s visual quality, and we use deep neural networks to extract the image’s semantic content. SVR is then used to create the quality prediction model by analyzing the relationship between the extracted features and the picture quality. Experiments done on the UWIQA database demonstrate the superiority of the proposed method.
Y. Du and X. Xiao—Contribute equally to this work.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Liu, Y., Li, X.: No-reference quality assessment for contrast-distorted images. IEEE Access 8, 84105–84115 (2020)
Liu, Y., Fan, X., Gao, X., Liu, Y., Zhao, D.: Motion vector refinement for frame rate up conversion on 3D video. In: 2013 Visual Communications and Image Processing (VCIP), pp. 1–6. IEEE (2013)
Liu, Y., Zhai, G., Zhao, D., Liu, X.: Frame rate and perceptual quality for HD video. In: Ho, Y.-S., Sang, J., Ro, Y.M., Kim, J., Wu, F. (eds.) PCM 2015. LNCS, vol. 9315, pp. 497–505. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24078-7_50
Liu, Y., Zhai, G., Liu, X., Zhao, D.: Perceptual image quality assessment combining free-energy principle and sparse representation. In: 2016 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1586–1589. IEEE (2016)
Hu, R., Liu, Y., Wang, Z., Li, X.: Blind quality assessment of night-time image. Displays 69, 102045 (2021)
Hu, R., Monebhurrun, V., Himeno, R., Yokota, H., Costen, F.: A statistical parsimony method for uncertainty quantification of FDTD computation based on the PCA and ridge regression. IEEE Trans. Antennas Propag. 67(7), 4726–4737 (2019)
Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)
Ye, P., Kumar, J., Kang, L., Doermann, D.: Unsupervised feature learning framework for no-reference image quality assessment, pp. 1098–1105 (2012)
Bianco, S., Celona, L., Napoletano, P., Schettini, R.: On the use of deep learning for blind image quality assessment. SIViP 12(2), 355–362 (2018). https://doi.org/10.1007/s11760-017-1166-8
Kang, L., Ye, P., Li, Y., Doermann, D.: Convolutional neural networks for no-reference image quality assessment, pp. 1733–1740 (2014)
Hou, W., Gao, X., Tao, D., Li, X.: Blind image quality assessment via deep learning. IEEE Trans. Neural Netw. Learn. Syst. 26(6), 1275–1286 (2014)
Ma, K., Liu, W., Zhang, K., Duanmu, Z., Wang, Z., Zuo, W.: End-to-end blind image quality assessment using deep neural networks. IEEE Trans. Image Process. 27(3), 1202–1213 (2017)
Ma, Y., Cai, X., Sun, F.: Towards no-reference image quality assessment based on multi-scale convolutional neural network. Comput. Model. Eng. Sci. 123(1), 201–216 (2020)
Yang, M., Sowmya, A.: An underwater color image quality evaluation metric. IEEE Trans. Image Process. 24(12), 6062–6071 (2015)
Panetta, K., Gao, C., Agaian, S.: Human-visual-system-inspired underwater image quality measures. IEEE J. Oceanic Eng. 41(3), 541–551 (2015)
Wang, Y., et al.: An imaging-inspired no-reference underwater color image quality assessment metric. Comput. Electr. Eng. 70, 904–913 (2018)
Yang, N., Zhong, Q., Li, K., Cong, R., Zhao, Y., Kwong, S.: A reference-free underwater image quality assessment metric in frequency domain. Sig. Process. Image Commun. 94, 116218 (2021)
Van Essen, D.C., Maunsell, J.H.: Hierarchical organization and functional streams in the visual cortex. Trends Neurosci. 6, 370–375 (1983)
Hu, R., Liu, Y., Gu, K., Min, X., Zhai, G.: Toward a no-reference quality metric for camera-captured images. IEEE Trans. Cybern. (2021)
Hu, R., Monebhurrun, V., Himeno, R., Yokota, H., Costen, F.: Uncertainty analysis on FDTD computation with artificial neural network. IEEE Antennas Propag. Mag. (2021)
Liu, Y., Gu, K., Zhai, G., Liu, X., Zhao, D., Gao, W.: Quality assessment for real out-of-focus blurred images. J. Vis. Commun. Image Represent. 46, 70–80 (2017)
Liu, Y., Zhai, G., Gu, K., Liu, X., Zhao, D., Gao, W.: Reduced-reference image quality assessment in free-energy principle and sparse representation. IEEE Trans. Multimedia 20(2), 379–391 (2018)
Liu, Y., Gu, K., Wang, S., Zhao, D., Gao, W.: Blind quality assessment of camera images based on low-level and high-level statistical features. IEEE Trans. Multimedia 21(1), 135–146 (2019)
Hu, R., Yang, R., Liu, Y., Li, X.: Simulation and mitigation of the wrap-around artifact in the MRI image. Front. Comput. Neurosci. 15, 89 (2021)
Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)
Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)
Hu, R., Monebhurrun, V., Himeno, R., Yokota, H., Costen, F.: An adaptive least angle regression method for uncertainty quantification in FDTD computation. IEEE Trans. Antennas Propag. 66(12), 7188–7197 (2018)
Schettini, R., Corchs, S.: Underwater image processing: state of the art of restoration and image enhancement methods. EURASIP J. Adv. Sig. Process. 2010, 1–14 (2010). https://doi.org/10.1155/2010/746052
He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010)
Panetta, K., Samani, A., Agaian, S.: Choosing the optimal spatial domain measure of enhancement for mammogram images. Int. J. Biomed. Imaging 2014, 3 (2014)
Li, D., Jiang, T., Jiang, M.: Exploiting high-level semantics for no-reference image quality assessment of realistic blur images. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 378–386 (2017)
Gu, S., Bao, J., Chen, D., Wen, F.: GIQA: generated image quality assessment. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 369–385. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_22
Hu, R., Monebhurrun, V., Himeno, R., Yokota, H., Costen, F.: A general framework for building surrogate models for uncertainty quantification in computational electromagnetics. IEEE Trans. Antennas Propag. 70(2), 1402–1414 (2021)
Rohaly, A.M., Libert, J., Corriveau, P., Webster, A., et al.: Final report from the video quality experts group on the validation of objective models of video quality assessment. ITU-T Standards Contribution COM, pp. 9–80 (2000)
Zhang, W., Ma, K., Yan, J., Deng, D., Wang, Z.: Blind image quality assessment using a deep bilinear convolutional neural network. IEEE Trans. Circ. Syst. Video Technol. 30(1), 36–47 (2020)
Gu, K., Zhai, G., Yang, X., Zhang, W.: Using free energy principle for blind image quality assessment. IEEE Trans. Multimedia 17(1), 50–63 (2015)
Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)
Min, X., Gu, K., Zhai, G., Liu, J., Yang, X., Chen, C.W.: Blind quality assessment based on pseudo reference image. IEEE Trans. Multimedia 20(8), 2049–2062 (2017)
Su, S., et al.: Blindly assess image quality in the wild guided by a self-adaptive hyper network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3667–3676 (2020)
Gu, K., Zhai, G., Yang, X., Zhang, W.: Using free energy principle for blind image quality assessment. IEEE Trans. Multimedia 17(1), 50–63 (2014)
Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely blind’’ image quality analyzer. IEEE Sig. Process. Lett. 20(3), 209–212 (2012)
Liu, Y., et al.: Unsupervised blind image quality evaluation via statistical measurements of structure, naturalness, and perception. IEEE Trans. Circ. Syst. Video Technol. 30(4), 929–943 (2019)
Liu, Y., Gu, K., Li, X., Zhang, Y.: Blind image quality assessment by natural scene statistics and perceptual characteristics. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 16(3), 1–91 (2020)
Min, X., et al.: Quality evaluation of image dehazing methods using synthetic hazy images. IEEE Trans. Multimedia 21(9), 2319–2333 (2019)
Zhang, J., et al.: HazDesNet: an end-to-end network for haze density prediction. IEEE Trans. Intell. Transp. Syst. 23(4), 3087–3102 (2020)
Acknowledgments
This work is supported by the National Key R &D Program of China (No. 2021YFF0900503), the National Natural Science Foundation of China (No. 62102059 & 62201538), the Fundamental Research Funds for the Central Universities (No. 3132022225), and the Natural Science Foundation of Shandong Province under grant ZR2022QF006.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Du, Y. et al. (2023). Blindly Evaluate the Quality of Underwater Images via Multi-perceptual Properties. In: Zhai, G., Zhou, J., Yang, H., Yang, X., An, P., Wang, J. (eds) Digital Multimedia Communications. IFTC 2022. Communications in Computer and Information Science, vol 1766. Springer, Singapore. https://doi.org/10.1007/978-981-99-0856-1_21
Download citation
DOI: https://doi.org/10.1007/978-981-99-0856-1_21
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-0855-4
Online ISBN: 978-981-99-0856-1
eBook Packages: Computer ScienceComputer Science (R0)