Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Blindly Evaluate the Quality of Underwater Images via Multi-perceptual Properties

  • Conference paper
  • First Online:
Digital Multimedia Communications (IFTC 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1766))

  • 660 Accesses

Abstract

The quality of underwater images can vary greatly due to the complexity of the underwater environment as well as the limitations of imaging devices. This can have an effect on the practical applications that are used in fields such as scientific research, the modern military, and other fields. As a result, attaining subjective quality assessment to differentiate distinct qualities of underwater photos plays a significant role in guiding subsequent tasks. In this study, an effective reference-free underwater image quality assessment metric is proposed by combining the colorfulness, contrast, sharpness, and high-level semantics cues while taking into account the underwater image degradation effect and human visual perception scheme. Specifically, we employ the low-level perceptual property-based method to characterize the image’s visual quality, and we use deep neural networks to extract the image’s semantic content. SVR is then used to create the quality prediction model by analyzing the relationship between the extracted features and the picture quality. Experiments done on the UWIQA database demonstrate the superiority of the proposed method.

Y. Du and X. Xiao—Contribute equally to this work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Liu, Y., Li, X.: No-reference quality assessment for contrast-distorted images. IEEE Access 8, 84105–84115 (2020)

    Article  Google Scholar 

  2. Liu, Y., Fan, X., Gao, X., Liu, Y., Zhao, D.: Motion vector refinement for frame rate up conversion on 3D video. In: 2013 Visual Communications and Image Processing (VCIP), pp. 1–6. IEEE (2013)

    Google Scholar 

  3. Liu, Y., Zhai, G., Zhao, D., Liu, X.: Frame rate and perceptual quality for HD video. In: Ho, Y.-S., Sang, J., Ro, Y.M., Kim, J., Wu, F. (eds.) PCM 2015. LNCS, vol. 9315, pp. 497–505. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24078-7_50

    Chapter  Google Scholar 

  4. Liu, Y., Zhai, G., Liu, X., Zhao, D.: Perceptual image quality assessment combining free-energy principle and sparse representation. In: 2016 IEEE International Symposium on Circuits and Systems (ISCAS), pp. 1586–1589. IEEE (2016)

    Google Scholar 

  5. Hu, R., Liu, Y., Wang, Z., Li, X.: Blind quality assessment of night-time image. Displays 69, 102045 (2021)

    Article  Google Scholar 

  6. Hu, R., Monebhurrun, V., Himeno, R., Yokota, H., Costen, F.: A statistical parsimony method for uncertainty quantification of FDTD computation based on the PCA and ridge regression. IEEE Trans. Antennas Propag. 67(7), 4726–4737 (2019)

    Article  Google Scholar 

  7. Szegedy, C., et al.: Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9 (2015)

    Google Scholar 

  8. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  9. Ye, P., Kumar, J., Kang, L., Doermann, D.: Unsupervised feature learning framework for no-reference image quality assessment, pp. 1098–1105 (2012)

    Google Scholar 

  10. Bianco, S., Celona, L., Napoletano, P., Schettini, R.: On the use of deep learning for blind image quality assessment. SIViP 12(2), 355–362 (2018). https://doi.org/10.1007/s11760-017-1166-8

    Article  Google Scholar 

  11. Kang, L., Ye, P., Li, Y., Doermann, D.: Convolutional neural networks for no-reference image quality assessment, pp. 1733–1740 (2014)

    Google Scholar 

  12. Hou, W., Gao, X., Tao, D., Li, X.: Blind image quality assessment via deep learning. IEEE Trans. Neural Netw. Learn. Syst. 26(6), 1275–1286 (2014)

    MathSciNet  Google Scholar 

  13. Ma, K., Liu, W., Zhang, K., Duanmu, Z., Wang, Z., Zuo, W.: End-to-end blind image quality assessment using deep neural networks. IEEE Trans. Image Process. 27(3), 1202–1213 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ma, Y., Cai, X., Sun, F.: Towards no-reference image quality assessment based on multi-scale convolutional neural network. Comput. Model. Eng. Sci. 123(1), 201–216 (2020)

    Google Scholar 

  15. Yang, M., Sowmya, A.: An underwater color image quality evaluation metric. IEEE Trans. Image Process. 24(12), 6062–6071 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Panetta, K., Gao, C., Agaian, S.: Human-visual-system-inspired underwater image quality measures. IEEE J. Oceanic Eng. 41(3), 541–551 (2015)

    Article  Google Scholar 

  17. Wang, Y., et al.: An imaging-inspired no-reference underwater color image quality assessment metric. Comput. Electr. Eng. 70, 904–913 (2018)

    Article  Google Scholar 

  18. Yang, N., Zhong, Q., Li, K., Cong, R., Zhao, Y., Kwong, S.: A reference-free underwater image quality assessment metric in frequency domain. Sig. Process. Image Commun. 94, 116218 (2021)

    Article  Google Scholar 

  19. Van Essen, D.C., Maunsell, J.H.: Hierarchical organization and functional streams in the visual cortex. Trends Neurosci. 6, 370–375 (1983)

    Article  Google Scholar 

  20. Hu, R., Liu, Y., Gu, K., Min, X., Zhai, G.: Toward a no-reference quality metric for camera-captured images. IEEE Trans. Cybern. (2021)

    Google Scholar 

  21. Hu, R., Monebhurrun, V., Himeno, R., Yokota, H., Costen, F.: Uncertainty analysis on FDTD computation with artificial neural network. IEEE Antennas Propag. Mag. (2021)

    Google Scholar 

  22. Liu, Y., Gu, K., Zhai, G., Liu, X., Zhao, D., Gao, W.: Quality assessment for real out-of-focus blurred images. J. Vis. Commun. Image Represent. 46, 70–80 (2017)

    Article  Google Scholar 

  23. Liu, Y., Zhai, G., Gu, K., Liu, X., Zhao, D., Gao, W.: Reduced-reference image quality assessment in free-energy principle and sparse representation. IEEE Trans. Multimedia 20(2), 379–391 (2018)

    Article  Google Scholar 

  24. Liu, Y., Gu, K., Wang, S., Zhao, D., Gao, W.: Blind quality assessment of camera images based on low-level and high-level statistical features. IEEE Trans. Multimedia 21(1), 135–146 (2019)

    Article  Google Scholar 

  25. Hu, R., Yang, R., Liu, Y., Li, X.: Simulation and mitigation of the wrap-around artifact in the MRI image. Front. Comput. Neurosci. 15, 89 (2021)

    Google Scholar 

  26. Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  27. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

  28. Hu, R., Monebhurrun, V., Himeno, R., Yokota, H., Costen, F.: An adaptive least angle regression method for uncertainty quantification in FDTD computation. IEEE Trans. Antennas Propag. 66(12), 7188–7197 (2018)

    Article  Google Scholar 

  29. Schettini, R., Corchs, S.: Underwater image processing: state of the art of restoration and image enhancement methods. EURASIP J. Adv. Sig. Process. 2010, 1–14 (2010). https://doi.org/10.1155/2010/746052

    Article  Google Scholar 

  30. He, K., Sun, J., Tang, X.: Single image haze removal using dark channel prior. IEEE Trans. Pattern Anal. Mach. Intell. 33(12), 2341–2353 (2010)

    Google Scholar 

  31. Panetta, K., Samani, A., Agaian, S.: Choosing the optimal spatial domain measure of enhancement for mammogram images. Int. J. Biomed. Imaging 2014, 3 (2014)

    Article  Google Scholar 

  32. Li, D., Jiang, T., Jiang, M.: Exploiting high-level semantics for no-reference image quality assessment of realistic blur images. In: Proceedings of the 25th ACM International Conference on Multimedia, pp. 378–386 (2017)

    Google Scholar 

  33. Gu, S., Bao, J., Chen, D., Wen, F.: GIQA: generated image quality assessment. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12356, pp. 369–385. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58621-8_22

    Chapter  Google Scholar 

  34. Hu, R., Monebhurrun, V., Himeno, R., Yokota, H., Costen, F.: A general framework for building surrogate models for uncertainty quantification in computational electromagnetics. IEEE Trans. Antennas Propag. 70(2), 1402–1414 (2021)

    Article  Google Scholar 

  35. Rohaly, A.M., Libert, J., Corriveau, P., Webster, A., et al.: Final report from the video quality experts group on the validation of objective models of video quality assessment. ITU-T Standards Contribution COM, pp. 9–80 (2000)

    Google Scholar 

  36. Zhang, W., Ma, K., Yan, J., Deng, D., Wang, Z.: Blind image quality assessment using a deep bilinear convolutional neural network. IEEE Trans. Circ. Syst. Video Technol. 30(1), 36–47 (2020)

    Article  Google Scholar 

  37. Gu, K., Zhai, G., Yang, X., Zhang, W.: Using free energy principle for blind image quality assessment. IEEE Trans. Multimedia 17(1), 50–63 (2015)

    Article  Google Scholar 

  38. Mittal, A., Moorthy, A.K., Bovik, A.C.: No-reference image quality assessment in the spatial domain. IEEE Trans. Image Process. 21(12), 4695–4708 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Min, X., Gu, K., Zhai, G., Liu, J., Yang, X., Chen, C.W.: Blind quality assessment based on pseudo reference image. IEEE Trans. Multimedia 20(8), 2049–2062 (2017)

    Article  Google Scholar 

  40. Su, S., et al.: Blindly assess image quality in the wild guided by a self-adaptive hyper network. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3667–3676 (2020)

    Google Scholar 

  41. Gu, K., Zhai, G., Yang, X., Zhang, W.: Using free energy principle for blind image quality assessment. IEEE Trans. Multimedia 17(1), 50–63 (2014)

    Article  Google Scholar 

  42. Mittal, A., Soundararajan, R., Bovik, A.C.: Making a “completely blind’’ image quality analyzer. IEEE Sig. Process. Lett. 20(3), 209–212 (2012)

    Article  Google Scholar 

  43. Liu, Y., et al.: Unsupervised blind image quality evaluation via statistical measurements of structure, naturalness, and perception. IEEE Trans. Circ. Syst. Video Technol. 30(4), 929–943 (2019)

    Article  Google Scholar 

  44. Liu, Y., Gu, K., Li, X., Zhang, Y.: Blind image quality assessment by natural scene statistics and perceptual characteristics. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 16(3), 1–91 (2020)

    Article  Google Scholar 

  45. Min, X., et al.: Quality evaluation of image dehazing methods using synthetic hazy images. IEEE Trans. Multimedia 21(9), 2319–2333 (2019)

    Article  Google Scholar 

  46. Zhang, J., et al.: HazDesNet: an end-to-end network for haze density prediction. IEEE Trans. Intell. Transp. Syst. 23(4), 3087–3102 (2020)

    Article  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Key R &D Program of China (No. 2021YFF0900503), the National Natural Science Foundation of China (No. 62102059 & 62201538), the Fundamental Research Funds for the Central Universities (No. 3132022225), and the Natural Science Foundation of Shandong Province under grant ZR2022QF006.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Runze Hu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Du, Y. et al. (2023). Blindly Evaluate the Quality of Underwater Images via Multi-perceptual Properties. In: Zhai, G., Zhou, J., Yang, H., Yang, X., An, P., Wang, J. (eds) Digital Multimedia Communications. IFTC 2022. Communications in Computer and Information Science, vol 1766. Springer, Singapore. https://doi.org/10.1007/978-981-99-0856-1_21

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0856-1_21

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0855-4

  • Online ISBN: 978-981-99-0856-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics