Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Dense 3D Reconstruction of Non-cooperative Target Based on Pose Measurement

  • Conference paper
  • First Online:
Digital Multimedia Communications (IFTC 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1766))

Abstract

To accurately identify the three-dimensional (3D) structure information of non-cooperative targets in on-orbit service tasks, this paper proposed a 3D reconstruction method combining pose measurement and dense reconstruction. Firstly, based on the depth camera, the Iterative Closest Point (ICP) algorithm is used to realize the pose measurement between each frame of the non-cooperative target. Then, the loopback detection based on the bag-of-words method is adopted to eliminate the cumulative error of pose measurement. At the same time, the sparse 3D model of the non-cooperative target can be obtained by combining feature point extraction and matching. Furthermore, secondary sampling is performed in the tracking and local mapping threads by increasing the dense mapping thread. Then, the loop thread is used to update the pose in turn. After the global pose optimization, a more accurate 3D reconstruction model can be obtained. By using point cloud optimization, the accurate dense 3D reconstruction model of a non-cooperative target is constructed. Finally, numerical simulations and experiments verify the accuracy and effectiveness of the proposed method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Zhang, L., Wu, D.M., Ren, Y.: Pose measurement for non-cooperative target based on visual information. IEEE Access 7, 106179–106194 (2019)

    Article  Google Scholar 

  2. Liu, Y., Zhai, G., Gu, K., et al.: Reduced-reference image quality assessment in free-energy principle and sparse representation. IEEE Trans. Multimed. 20(1), 379–391 (2017)

    Google Scholar 

  3. Peng, J., Xu, W., Liang, B., et al.: Virtual stereovision pose measurement of noncooperative space targets for a dual-arm space robot. IEEE Trans. Instrum. Measur. 69(1), 76–88 (2019)

    Article  Google Scholar 

  4. Liu, Y., Gu, K., Wang, S., et al.: Blind quality assessment of camera images based on low-level and high-level statistical features. IEEE Trans. Multimed. 21(1), 135–146 (2018)

    Article  Google Scholar 

  5. Kang, Z., Yang, J., Yang, Z., et al.: A review of techniques for 3D reconstruction of indoor environments. ISPRS Int. J. Geo-Inf. 9(5), 330 (2020)

    Article  Google Scholar 

  6. Gao, X.-H., Liang, B., Pan, L., Li, Z.-H., Zhang, Y.-C.: A monocular structured light vision method for pose determination of large non-cooperative satellites. Int. J. Control Autom. Syst. 14(6), 1535–1549 (2016). https://doi.org/10.1007/s12555-014-0546-x

    Article  Google Scholar 

  7. Liu, Y., Gu, K., Zhang, Y., et al.: Unsupervised blind image quality evaluation via statistical measurements of structure, naturalness, and perception. IEEE Trans. Circ. Syst. Video Technol. 30(4), 929–9434 (2019)

    Article  Google Scholar 

  8. Gibbs, J.A., Pound, M.P., French, A.P., et al.: Active vision and surface reconstruction for 3D plant shoot modelling. IEEE/ACM Trans. Comput. Biol. Bioinf. 17(6), 1907–1917 (2019)

    Article  Google Scholar 

  9. He, J., Yang, G., Liu, X., et al.: Spatio-temporal saliency-based motion vector refinement for frame rate up-conversion. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 16(2), 1–18 (2020)

    Google Scholar 

  10. Kolb, A., Barth, E., Koch, R., et al.: Time-of-flight cameras in computer graphics. In: Computer Graphics Forum, vol. 29, no. 1, pp. 141–159. Blackwell Publishing Ltd, Oxford (2010)

    Google Scholar 

  11. Liu, Y., Gu, K., Li, X., et al.: Blind image quality assessment by natural scene statistics and perceptual characteristics. ACM Trans. Multimed. Comput. Commun. Appl. (TOMM) 16(3), 1–91 (2020)

    Google Scholar 

  12. Jalal, A., Kamal, S., Kim, D.: Shape and motion features approach for activity tracking and recognition from kinect video camera. In: 2015 IEEE 29th International Conference on Advanced Information Networking and Applications Workshops, pp. 445–450. IEEE (2015)

    Google Scholar 

  13. Liu, C., Li, J., Gao, J., et al.: Three-dimensional texture measurement using deep learning and multi-view pavement images. Measurement 172, 108828 (2021)

    Article  Google Scholar 

  14. Liu, Y., Gu, K., Zhai, G., et al.: Quality assessment for real out-of-focus blurred images. J. Vis. Commun. Image Representation 46, 70–80 (2017)

    Article  Google Scholar 

  15. Workman, S., Greenwell, C., Zhai, M., et al.: A method for direct focal length estimation. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 1369–1373. IEEE (2015)

    Google Scholar 

  16. Hu, H., Gao, J., Zhou, H., et al.: A combined binary defocusing technique with multi-frequency phase error compensation in 3D shape measurement. Optics Lasers Eng. 124, 105806 (2020)

    Article  Google Scholar 

  17. Hu, R., Liu, Y., Gu, K., et al.: Toward a no-reference quality metric for camera-captured images. IEEE Trans. Cybern. (2021)

    Google Scholar 

  18. Zheng, Y., Sugimoto, S., Sato, I., et al.: A general and simple method for camera pose and focal length determination. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 430–437. IEEE (2014)

    Google Scholar 

  19. He, L., Wang, G., Hu, Z.: Learning depth from single images with deep neural network embedding focal length. IEEE Trans. Image Process. 27(9), 4676–4689 (2018)

    Article  MathSciNet  Google Scholar 

  20. Liu, Y., Li, X.: No-reference quality assessment for contrast-distorted images. IEEE Access 8, 84105–84115 (2020)

    Article  Google Scholar 

  21. Wallace, L., Lucieer, A., Malenovský, Z., et al.: Assessment of forest structure using two UAV techniques: a comparison of airborne laser scanning and structure from motion (SfM) point clouds. Forests 7(3), 62 (2016)

    Article  Google Scholar 

  22. Gonçalves, G., Gonçalves, D., Gómez-Gutiérrez, Á., et al.: 3D reconstruction of coastal cliffs from fixed-wing and multi-rotor UAS: Impact of SfM-MVS processing parameters, image redundancy and acquisition geometry. Remote Sensing 13(6), 1222 (2021)

    Article  Google Scholar 

  23. Lhuillier, M., Quan, L.: A quasi-dense approach to surface reconstruction from uncalibrated images. IEEE Trans. Pattern Anal. Mach. Intell. 27(3), 418–433 (2005)

    Article  Google Scholar 

  24. Furukawa, Y., Ponce, J.: Accurate, dense, and robust multi-view stereopsis. IEEE Trans. Pattern Anal. Mach. Intell. 23(8), 1362–1376 (2010)

    Article  Google Scholar 

  25. Qader, W.A, Ameen, M.M., Ahmed, B.I.: An overview of bag of words; importance, implementation, applications, and challenges. In: International Engineering Conference (IEC), pp. 200–204. IEEE (2019)

    Google Scholar 

  26. Ahmed, M., Seraj, R., Islam, S.M.S.: The K-means algorithm: a comprehensive survey and performance evaluation. Electronics 9(8), 1295 (2020)

    Article  Google Scholar 

  27. Bai, F., Vidal-Calleja, T., Grisetti, G.: Sparse pose graph optimization in cycle space. IEEE Trans. Rob. 37(5), 1381–1400 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hao Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, J., Wang, H., Zhao, Y., Yuan, R., Xu, F. (2023). Dense 3D Reconstruction of Non-cooperative Target Based on Pose Measurement. In: Zhai, G., Zhou, J., Yang, H., Yang, X., An, P., Wang, J. (eds) Digital Multimedia Communications. IFTC 2022. Communications in Computer and Information Science, vol 1766. Springer, Singapore. https://doi.org/10.1007/978-981-99-0856-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-0856-1_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-0855-4

  • Online ISBN: 978-981-99-0856-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics