Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Evolving Temporal Knowledge Graphs by Iterative Spatio-Temporal Walks

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1791))

Included in the following conference series:

  • 975 Accesses

Abstract

Predicting facts that occur in the future is a challenging task in temporal knowledge graphs (TKGs). TKGs represent temporal facts about entities and their relations, where each fact is associated with a timestamp. Inspired from the human inference process that predictions are usually made by analyzing relevant historical clues, in this paper, we propose a model based on temporal evolution and temporal graph attention mechanism to infer future facts. Specifically, we construct a node pool to keep the importance of all nodes encountered in the historical search. We learn temporal evolution features and sub-graph structures based on temporal random walks and graph attention networks. Moreover, these sub-graphs are sets of objects with the same subjects and relations as the query. Experiments on five temporal datasets demonstrate the effectiveness of the model compared with the state-of-the-art methods. Codes are available at https://github.com/lendie/SWGAT.

H. Tang and D. Liu—Equal contribution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, vol. 26 (2013)

    Google Scholar 

  2. Dasgupta, S.S., Ray, S.N., Talukdar, P.: Hyte: hyperplane-based temporally aware knowledge graph embedding. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2001–2011 (2018)

    Google Scholar 

  3. Deng, S., Rangwala, H., Ning, Y.: Dynamic knowledge graph based multi-event forecasting. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1585–1595 (2020)

    Google Scholar 

  4. Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2d knowledge graph embeddings. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)

    Google Scholar 

  5. García-Durán, A., Dumančić, S., Niepert, M.: Learning sequence encoders for temporal knowledge graph completion. arXiv preprint arXiv:1809.03202 (2018)

  6. Goel, R., Kazemi, S.M., Brubaker, M., Poupart, P.: Diachronic embedding for temporal knowledge graph completion. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3988–3995 (2020)

    Google Scholar 

  7. Goyal, P., Chhetri, S.R., Canedo, A.: dyngraph2vec: capturing network dynamics using dynamic graph representation learning. Knowl. Based Syst. 187, 104816 (2020)

    Article  Google Scholar 

  8. Han, Z., Chen, P., Ma, Y., Tresp, V.: Explainable subgraph reasoning for forecasting on temporal knowledge graphs. In: International Conference on Learning Representations (2020)

    Google Scholar 

  9. Jin, W., Qu, M., Jin, X., Ren, X.: Recurrent event network: autoregressive structure inference over temporal knowledge graphs. arXiv preprint arXiv:1904.05530 (2019)

  10. Jung, J., Jung, J., Kang, U.: T-gap: Learning to walk across time for temporal knowledge graph completion. arXiv preprint arXiv:2012.10595 (2020)

  11. Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)

    Article  Google Scholar 

  12. Liu, Z., Xiong, C., Sun, M., Liu, Z.: Entity-duet neural ranking: Understanding the role of knowledge graph semantics in neural information retrieval. arXiv preprint arXiv:1805.07591 (2018)

  13. Nathani, D., Chauhan, J., Sharma, C., Kaul, M.: Learning attention-based embeddings for relation prediction in knowledge graphs. arXiv preprint arXiv:1906.01195 (2019)

  14. Nickel, M., Rosasco, L., Poggio, T.: Holographic embeddings of knowledge graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30 (2016)

    Google Scholar 

  15. Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-relational data. In: ICML (2011)

    Google Scholar 

  16. Pareja, A., et al.: EvolveGCN: evolving graph convolutional networks for dynamic graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5363–5370 (2020)

    Google Scholar 

  17. Park, N., Liu, F., Mehta, P., Cristofor, D., Faloutsos, C., Dong, Y.: EVOKG: jointly modeling event time and network structure for reasoning over temporal knowledge graphs. In: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, pp. 794–803 (2022)

    Google Scholar 

  18. Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., Navigli, R., Vidal, M.-E., Hitzler, P., Troncy, R., Hollink, L., Tordai, A., Alam, M. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38

    Chapter  Google Scholar 

  19. Seo, Y., Defferrard, M., Vandergheynst, P., Bresson, X.: Structured sequence modeling with graph convolutional recurrent networks. In: Cheng, L., Leung, A.C.S., Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11301, pp. 362–373. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04167-0_33

    Chapter  Google Scholar 

  20. Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: Rotate: knowledge graph embedding by relational rotation in complex space. arXiv preprint arXiv:1902.10197 (2019)

  21. Trivedi, R., Dai, H., Wang, Y., Song, L.: Know-evolve: deep temporal reasoning for dynamic knowledge graphs. In: international Conference on Machine Learning, pp. 3462–3471. PMLR (2017)

    Google Scholar 

  22. Trivedi, R., Farajtabar, M., Biswal, P., Zha, H.: DYREP: learning representations over dynamic graphs. In: International Conference on Learning Representations (2019)

    Google Scholar 

  23. Wang, Y., Chang, Y.Y., Liu, Y., Leskovec, J., Li, P.: Inductive representation learning in temporal networks via causal anonymous walks. arXiv preprint arXiv:2101.05974 (2021)

  24. Wang, Y., Chiew, V.: On the cognitive process of human problem solving. Cogn. Syst. Res. 11(1), 81–92 (2010)

    Article  Google Scholar 

  25. Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28 (2014)

    Google Scholar 

  26. Yang, B., Yih, W.t., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575 (2014)

  27. Zhao, M., Zhang, L., Kong, Y., Yin, B.: Temporal knowledge graph reasoning triggered by memories. arXiv preprint arXiv:2110.08765 (2021)

  28. Zhu, C., Chen, M., Fan, C., Cheng, G., Zhan, Y.: Learning from history: modeling temporal knowledge graphs with sequential copy-generation networks. arXiv preprint arXiv:2012.08492 (2020)

Download references

Acknowledgment

This work is supported by grants from Shengze Li’s National Natural Science Foundation of China (No. 11901578).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feng Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tang, H., Liu, D., Xu, X., Zhang, F. (2023). Evolving Temporal Knowledge Graphs by Iterative Spatio-Temporal Walks. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Communications in Computer and Information Science, vol 1791. Springer, Singapore. https://doi.org/10.1007/978-981-99-1639-9_42

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1639-9_42

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1638-2

  • Online ISBN: 978-981-99-1639-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics