Abstract
Predicting facts that occur in the future is a challenging task in temporal knowledge graphs (TKGs). TKGs represent temporal facts about entities and their relations, where each fact is associated with a timestamp. Inspired from the human inference process that predictions are usually made by analyzing relevant historical clues, in this paper, we propose a model based on temporal evolution and temporal graph attention mechanism to infer future facts. Specifically, we construct a node pool to keep the importance of all nodes encountered in the historical search. We learn temporal evolution features and sub-graph structures based on temporal random walks and graph attention networks. Moreover, these sub-graphs are sets of objects with the same subjects and relations as the query. Experiments on five temporal datasets demonstrate the effectiveness of the model compared with the state-of-the-art methods. Codes are available at https://github.com/lendie/SWGAT.
H. Tang and D. Liu—Equal contribution.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems, vol. 26 (2013)
Dasgupta, S.S., Ray, S.N., Talukdar, P.: Hyte: hyperplane-based temporally aware knowledge graph embedding. In: Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing, pp. 2001–2011 (2018)
Deng, S., Rangwala, H., Ning, Y.: Dynamic knowledge graph based multi-event forecasting. In: Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 1585–1595 (2020)
Dettmers, T., Minervini, P., Stenetorp, P., Riedel, S.: Convolutional 2d knowledge graph embeddings. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 32 (2018)
García-Durán, A., Dumančić, S., Niepert, M.: Learning sequence encoders for temporal knowledge graph completion. arXiv preprint arXiv:1809.03202 (2018)
Goel, R., Kazemi, S.M., Brubaker, M., Poupart, P.: Diachronic embedding for temporal knowledge graph completion. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 3988–3995 (2020)
Goyal, P., Chhetri, S.R., Canedo, A.: dyngraph2vec: capturing network dynamics using dynamic graph representation learning. Knowl. Based Syst. 187, 104816 (2020)
Han, Z., Chen, P., Ma, Y., Tresp, V.: Explainable subgraph reasoning for forecasting on temporal knowledge graphs. In: International Conference on Learning Representations (2020)
Jin, W., Qu, M., Jin, X., Ren, X.: Recurrent event network: autoregressive structure inference over temporal knowledge graphs. arXiv preprint arXiv:1904.05530 (2019)
Jung, J., Jung, J., Kang, U.: T-gap: Learning to walk across time for temporal knowledge graph completion. arXiv preprint arXiv:2012.10595 (2020)
Koren, Y., Bell, R., Volinsky, C.: Matrix factorization techniques for recommender systems. Computer 42(8), 30–37 (2009)
Liu, Z., Xiong, C., Sun, M., Liu, Z.: Entity-duet neural ranking: Understanding the role of knowledge graph semantics in neural information retrieval. arXiv preprint arXiv:1805.07591 (2018)
Nathani, D., Chauhan, J., Sharma, C., Kaul, M.: Learning attention-based embeddings for relation prediction in knowledge graphs. arXiv preprint arXiv:1906.01195 (2019)
Nickel, M., Rosasco, L., Poggio, T.: Holographic embeddings of knowledge graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 30 (2016)
Nickel, M., Tresp, V., Kriegel, H.P.: A three-way model for collective learning on multi-relational data. In: ICML (2011)
Pareja, A., et al.: EvolveGCN: evolving graph convolutional networks for dynamic graphs. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 34, pp. 5363–5370 (2020)
Park, N., Liu, F., Mehta, P., Cristofor, D., Faloutsos, C., Dong, Y.: EVOKG: jointly modeling event time and network structure for reasoning over temporal knowledge graphs. In: Proceedings of the Fifteenth ACM International Conference on Web Search and Data Mining, pp. 794–803 (2022)
Schlichtkrull, M., Kipf, T.N., Bloem, P., van den Berg, R., Titov, I., Welling, M.: Modeling relational data with graph convolutional networks. In: Gangemi, A., Navigli, R., Vidal, M.-E., Hitzler, P., Troncy, R., Hollink, L., Tordai, A., Alam, M. (eds.) ESWC 2018. LNCS, vol. 10843, pp. 593–607. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93417-4_38
Seo, Y., Defferrard, M., Vandergheynst, P., Bresson, X.: Structured sequence modeling with graph convolutional recurrent networks. In: Cheng, L., Leung, A.C.S., Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11301, pp. 362–373. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04167-0_33
Sun, Z., Deng, Z.H., Nie, J.Y., Tang, J.: Rotate: knowledge graph embedding by relational rotation in complex space. arXiv preprint arXiv:1902.10197 (2019)
Trivedi, R., Dai, H., Wang, Y., Song, L.: Know-evolve: deep temporal reasoning for dynamic knowledge graphs. In: international Conference on Machine Learning, pp. 3462–3471. PMLR (2017)
Trivedi, R., Farajtabar, M., Biswal, P., Zha, H.: DYREP: learning representations over dynamic graphs. In: International Conference on Learning Representations (2019)
Wang, Y., Chang, Y.Y., Liu, Y., Leskovec, J., Li, P.: Inductive representation learning in temporal networks via causal anonymous walks. arXiv preprint arXiv:2101.05974 (2021)
Wang, Y., Chiew, V.: On the cognitive process of human problem solving. Cogn. Syst. Res. 11(1), 81–92 (2010)
Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: Proceedings of the AAAI Conference on Artificial Intelligence, vol. 28 (2014)
Yang, B., Yih, W.t., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575 (2014)
Zhao, M., Zhang, L., Kong, Y., Yin, B.: Temporal knowledge graph reasoning triggered by memories. arXiv preprint arXiv:2110.08765 (2021)
Zhu, C., Chen, M., Fan, C., Cheng, G., Zhan, Y.: Learning from history: modeling temporal knowledge graphs with sequential copy-generation networks. arXiv preprint arXiv:2012.08492 (2020)
Acknowledgment
This work is supported by grants from Shengze Li’s National Natural Science Foundation of China (No. 11901578).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Tang, H., Liu, D., Xu, X., Zhang, F. (2023). Evolving Temporal Knowledge Graphs by Iterative Spatio-Temporal Walks. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Communications in Computer and Information Science, vol 1791. Springer, Singapore. https://doi.org/10.1007/978-981-99-1639-9_42
Download citation
DOI: https://doi.org/10.1007/978-981-99-1639-9_42
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-1638-2
Online ISBN: 978-981-99-1639-9
eBook Packages: Computer ScienceComputer Science (R0)