Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Deep Domain Adaptation for EEG-Based Cross-Subject Cognitive Workload Recognition

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1792))

Included in the following conference series:

Abstract

For cognitive workload recognition, electroencephalography (EEG) signals vary from different subjects, thus hindering the recognition performance when direct extending to a new subject. Though calibrating the new subject or collecting more data would alleviate this issue, it is generally time-consuming and unrealistic. To cope with the problem, we propose a deep domain adaptation scheme for EEG-based cross-subject cognitive workload recognition, using the knowledge from the existing subjects (source domain) to improve the recognition performance of a new subject (target domain). Specifically, the proposed method has four modules: the EEG features extractor, feature distribution alignment, label classifier, and domain discriminator. The EEG feature extractor learns transferable shallow feature representation of both domains. The label classifier further learns the deep representation from the shallow one and trains the classifier. To reduce the domain discrepancy, we employ feature distribution alignment and domain discriminator from shallow and deep representation views using a distribution discrepancy metric and adversarial training with the feature extractor, respectively. We conduct experiments to recognize the low and high workload levels on a self-designed EEG dataset with 38 subjects performing the working memory cognitive task. Experimental results validate that our proposed framework outperforms the baselines significantly.

Supported by the National Natural Science Foundation of China under Grant 62136004, Grant 61876082, and Grant 61732006; the National Key Research and Development Program of China under Grant 2018YFC2001600 and Grant 2018YFC2001602; the Fundamental Research Funds for the Central Universities under Grant NP2022451.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Appel, T., et al.: Cross-task and cross-participant classification of cognitive load in an emergency simulation game. IEEE Trans. Affect. Comput. (2021)

    Google Scholar 

  2. Wickens, C.D.: Multiple resources and performance prediction. Theor. Issues Ergon. Sci. 3(2), 159–177 (2002)

    Article  Google Scholar 

  3. Jimenez-Molina, A., Retamal, C., Lira, H.: Using psychophysiological sensors to assess mental workload during web browsing. Sensors 18(2), 458 (2018)

    Article  Google Scholar 

  4. Almogbel, M.A., Dang, A.H., Kameyama, W.: Cognitive workload detection from raw eeg-signals of vehicle driver using deep learning. In: 2019 21st International Conference on Advanced Communication Technology (ICACT), pp. 1–6. IEEE (2019)

    Google Scholar 

  5. Dehais, F., et al.: Monitoring pilot’s mental workload using erps and spectral power with a sixdry-electrode eeg system in real flight conditions. Sensors 19(6), 1324 (2019)

    Article  Google Scholar 

  6. Zhou, Y., Huang, S., Xu, Z., Wang, P., Wu, X., Zhang, D.: Cognitive workload recognition using EEG signals and machine learning: A review. IEEE Trans. Cogn. Dev. Syst. 14(3), 799–818 (2022)

    Article  Google Scholar 

  7. Tao, D., Tan, H., Wang, H., Zhang, X., Qu, X., Zhang, T.: A systematic review of physiological measures of mental workload. Int. J. Environ. Res. Public Health 16(15), 2716 (2019)

    Article  Google Scholar 

  8. Charles, R.L., Nixon, J.: Measuring mental workload using physiological measures: a systematic review. Appl. Ergon. 74, 221–232 (2019)

    Article  Google Scholar 

  9. Chikhi, S., Matton, N., Blanchet, S.: EEG power spectral measures of cognitive workload: a meta-analysis. Psychophysiology, e14009 (2022)

    Google Scholar 

  10. Gu, X., et al.: Eeg-based brain computer interfaces (bcis): a survey of recent studies on signal sensing technologies and computational intelligence approaches and their applications. IEEE/ACM Trans. Comput. Biol. Bioinf. 18, 1645–1666 (2021)

    Article  Google Scholar 

  11. Kakkos, I., et al.: EEG fingerprints of task-independent mental workload discrimination. IEEE J. Biomed. Health Inf. 25, 3824–3833 (2021)

    Article  Google Scholar 

  12. Gupta, A., Siddhad, G., Pandey, V., Roy, P.P., Kim, B.G.: Subject-specific cognitive workload classification using eeg-based functional connectivity and deep learning. Sensors (Basel, Switzerland) 21 (2021)

    Google Scholar 

  13. Pang, L., Guo, L., Zhang, J., Wanyan, X., Qu, H., Wang, X.: Subject-specific mental workload classification using eeg and stochastic configuration network (scn). Biomed. Signal Process. Control. 68, 102711 (2021)

    Article  Google Scholar 

  14. Li, W., Huan, W., Hou, B., Tian, Y., Zhang, Z., Song, A.: Can emotion be transferred? - a review on transfer learning for eeg-based emotion recognition. IEEE Trans. Cogn. Dev. Syst. 14, 833–846 (2021)

    Article  Google Scholar 

  15. Bhosale, S., Chakraborty, R., Kopparapu, S.K.: Calibration free meta learning based approach for subject independent eeg emotion recognition. Biomed. Signal Process. Control 72, 103289 (2022)

    Article  Google Scholar 

  16. Wang, Z., Hope, R.M., Wang, Z., Ji, Q., Gray, W.D.: Cross-subject workload classification with a hierarchical bayes model. NeuroImage 59, 64–69 (2012)

    Article  Google Scholar 

  17. Plechawska-Wojcik, M., Tokovarov, M., Kaczorowska, M., la Zapa, D.: A three-class classification of cognitive workload based on eeg spectral data. Appl. Sci. 9, 5340 (2019)

    Article  Google Scholar 

  18. Yin, Z., Zhao, M., Zhang, W., Wang, Y., Wang, Y., Zhang, J.: Physiological-signalbased mental workload estimation via transfer dynamical autoencoders in a deep learning framework. Neurocomputing 347, 212–229 (2019)

    Article  Google Scholar 

  19. Hefron, R.G., Borghetti, B.J., Schubert-Kabban, C.M., Christensen, J.C., Estepp, J.R.: Cross-participant eeg-based assessment of cognitive workload using multipath convolutional recurrent neural networks. Sensors (Basel, Switzerland) 18(2018)

    Google Scholar 

  20. Ni, Z., Xu, J., Wu, Y., Li, M., Xu, G., Xu, B.: Improving cross-state and crosssubject visual erp-based bci with temporal modeling and adversarial training. IEEE Trans. Neural Syst. Rehab. Eng. 30, 369–379 (2022)

    Article  Google Scholar 

  21. Borgwardt, K.M., Gretton, A., Rasch, M.J., Kriegel, H.P., Scholkopf, B., Smola, A.: Integrating structured biological data by kernel maximum mean discrepancy. Bioinformatics 22(14), e49–57 (2006)

    Google Scholar 

  22. Wang, W., et al.: Rethinking maximum mean discrepancy for visual domain adaptation. IEEE Trans. Neural Netw. Learn. Syst. 34, 264–277 (2021)

    Article  Google Scholar 

  23. Ajakan, H., Germain, P., Larochelle, H., Laviolette, F., Marchand, M.: Domainadversarial neural networks. arXiv preprint arXiv:1412.4446 (2014)

  24. Zhao, H., Zheng, Q., Ma, K., Li, H., Zheng, Y.: Deep representation-based domain adaptation for nonstationary eeg classification. IEEE Trans. Neural Netw. Learn. Syst. 32, 535–545 (2021)

    Article  Google Scholar 

  25. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17, 2030–2096 (2016)

    MathSciNet  Google Scholar 

  26. Zhou, Y., et al.: Cross-task cognitive workload recognition based on eeg and domain adaptation. IEEE Trans. Neural Syst. Rehabil. Eng. 30, 50–60 (2022)

    Article  Google Scholar 

  27. Roy, R.N., Charbonnier, S., Campagne, A., Bonnet, S.: Efficient mental workload estimation using task-independent eeg features. J. Neural Eng. 13(2), 026019 (2016)

    Article  Google Scholar 

  28. Spape, M.M.A., Verdonschot, R.G., van Danzig, S., van Steenbergen, H.: The eprimer: an introduction to creating psychological experiments in e-prime (2014)

    Google Scholar 

  29. Hefron, R.G., Borghetti, B.J., Christensen, J.C., Schubert-Kabban, C.M.: Deep long short-term memory structures model temporal dependencies improving cognitive workload estimation. Pattern Recogn. Lett. 94, 96–104 (2017)

    Article  Google Scholar 

  30. Lawhern, V.J., Solon, A.J., Waytowich, N.R., Gordon, S.M., Hung, C.P., Lance, B.: Eegnet: a compact convolutional network for eeg-based brain-computer interfaces. J. Neural Eng. 15, 056013 (2018)

    Article  Google Scholar 

  31. Schirrmeister, R.T., Springenberg, J.T., Fiederer, L.D.J., Glasstetter, M., Eggensperger, K., Tangermann, M., Hutter, F., Burgard, W., Ball, T.: Deep learning with convolutional neural networks for eeg decoding and visualization. Human Brain Mapp. 38, 5391–5420 (2017)

    Article  Google Scholar 

  32. Woolson, R.F.: Wilcoxon signed-rank test. In: Wiley Encyclopedia of Clinical Trials, pp. 1–3 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daoqiang Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, Y. et al. (2023). Deep Domain Adaptation for EEG-Based Cross-Subject Cognitive Workload Recognition. In: Tanveer, M., Agarwal, S., Ozawa, S., Ekbal, A., Jatowt, A. (eds) Neural Information Processing. ICONIP 2022. Communications in Computer and Information Science, vol 1792. Springer, Singapore. https://doi.org/10.1007/978-981-99-1642-9_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-1642-9_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-1641-2

  • Online ISBN: 978-981-99-1642-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics