Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Cluster-Constrained Graph Convolutional Network for Protein-Protein Association Networks

  • Conference paper
  • First Online:
Intelligent Information and Database Systems (ACIIDS 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13996))

Included in the following conference series:

  • 325 Accesses

Abstract

Cluster-GCN is one of the effective methods for studying the scalability of Graph Neural Networks. The idea of this approach is to use METIS community detection algorithm to split the graph into several sub-graphs, or communities that are small enough to fit into a common Graphics Processing Unit. However, METIS algorithm still has some limitations. Therefore, this research aims to improve the performance of cluster-GCN by changing the community detection algorithm, specifically by using Leiden algorithm as an alternative. Originally, Leiden algorithm is claimed to be powerful in identifying communities in networks. Nevertheless, the common feature of community detection algorithms makes nodes in the same community tend to be similar. For that reason, this research also proposes to add constraints such as minimum/maximum community size and overlapping communities to increase community diversity. By combining the above approaches with a careful analysis of protein data, our experiments on a single 8 GB GPU show that the performance of Cluster-GCN on the ogbn-proteins dataset could be improved by a 0.98% ROC-AUC score.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Szklarczyk, D., et al.: STRING v11: protein–protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47(D1), D607–D613 (2019)

    Article  Google Scholar 

  2. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv:1609.02907 (2016)

  3. Chiang, W.-L., Liu, X., Si, S., Li, Y., Bengio, S., Hsieh, C.-J.: Cluster-GCN: an efficient algorithm for training deep and large graph convolutional networks. In: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 257–266 (2019)

    Google Scholar 

  4. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large graphs. In: Advances in Neural Information Processing Systems, 30 (2017)

    Google Scholar 

  5. Chen, J., Ma, T., Xiao, C.: FastGCN: fast learning with graph convolutional networks via importance sampling. arXiv:1801.10247 (2018)

  6. Chen, J., Zhu, J., Song, L.: Stochastic training of graph convolutional networks with variance reduction. arXiv:1710.10568 (2017)

  7. Karypis, G., Kumar, V.: A fast and high quality multilevel scheme for partitioning irregular graphs. SIAM J. Sci. Comput. 20(1), 359–392 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  8. Shiokawa, H., Onizuka, M.: Scalable graph clustering and its applications. In: Alhajj, R., Rokne, J. (eds.) Encyclopedia of Social Network Analysis and Mining, pp. 2290–2299. Springer, New York (2018). https://doi.org/10.1007/978-1-4939-7131-2_110185

  9. Newman, M.E.J., Girvan, M.: Finding and evaluating community structure in networks. Phys. Rev. E 69(2), 026113 (2004)

    Article  Google Scholar 

  10. Blondel, V.D., Guillaume, J.-L., Lambiotte, R., Lefebvre, E.: Fast unfolding of communities in large networks. J. Stat. Mech. Theory Exp. 2008(10), P10008 (2008)

    Article  MATH  Google Scholar 

  11. Traag, V.A., Waltman, L., Van Eck, N.J.: From Louvain to Leiden: guaranteeing well-connected communities. Sci. Rep. 9(1), 5233 (2019)

    Article  Google Scholar 

  12. Liu, Y., Shah, N., Koutra, D.: An empirical comparison of the summarization power of graph clustering methods. arXiv:1511.06820 (2015)

  13. Xu, H., Lou, D., Carin, L.: Scalable gromov-wasserstein learning for graph partitioning and matching. In: Advances in Neural Information Processing Systems, 32 (2019)

    Google Scholar 

  14. Li, G., Xiong, C., Thabet, A., Ghanem, B.: Deepergcn: All you need to train deeper gcns. arXiv:2006.07739 (2020)

  15. Liu, W., Tang, Z., Wang, L., Li, M.: DCBGCN: an algorithm with high memory and computational efficiency for training deep graph convolutional network. In: Proceedings of the 3rd International Conference on Advanced Electronic Materials, Computers and Software Engineering (AEMCSE), pp. 16–21. IEEE (2020)

    Google Scholar 

  16. Luo, M., et al.: A novel high-order cluster-GCN-based approach for service recommendation. In: Xu, C., Xia, Y., Zhang, Y., Zhang, LJ. (eds.) ICWS 2021. LNCS, vol. 12994, pp. 32–45. Springer, Cham (2022). https://doi.org/10.1007/978-3-030-96140-4_3

  17. Li, G., Muller, M., Ghanem, B., Koltun, V.: Training graph neural networks with 1000 layers. In: International Conference on Machine Learning, pp. 6437–6449. PMLR (2021)

    Google Scholar 

  18. Xion, C.: Deep GCNs with random partition and generalized aggregator. Ph.D thesis. https://repository.kaust.edu.sa/bitstream/handle/10754/666216/ChenxinXiong_Masters_Thesis.pdf. Accessed 10 Feb 2023

  19. Hu, W., et al.: Open graph benchmark: datasets for machine learning on graphs. Adv. Neural. Inf. Process. Syst. 33, 22118–22133 (2020)

    Google Scholar 

  20. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch geometric. arXiv:1903.02428 (2019)

  21. Hung, P.D., Kien, N.N.: SSD-Mobilenet implementation for classifying fish species. In: Vasant, P., Zelinka, I., Weber, GW. (eds.) ICO 2019. AISC, vol. 1072, pp. 399–408. Springer, Cham. https://doi.org/10.1007/978-3-030-33585-4_40

  22. Hung, P.D., Su, N.T., Diep, V.T.: Surface classification of damaged concrete using deep convolutional neural network. Pattern Recognit. Image Anal. 29, 676–687 (2019)

    Article  Google Scholar 

  23. Hung, P.D., Su, N.T.: Unsafe construction behavior classification using deep convolutional neural network. Pattern Recognit. Image Anal. 31, 271–284 (2021)

    Article  Google Scholar 

  24. Duy, L.D., Hung, P.D.: Adaptive graph attention network in person re-identification. Pattern Recognit. Image Anal. 32, 384–392 (2022)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Phan Duy Hung .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Phuoc, N.B., Trang, D.T., Hung, P.D. (2023). A Cluster-Constrained Graph Convolutional Network for Protein-Protein Association Networks. In: Nguyen, N.T., et al. Intelligent Information and Database Systems. ACIIDS 2023. Lecture Notes in Computer Science(), vol 13996. Springer, Singapore. https://doi.org/10.1007/978-981-99-5837-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-5837-5_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-5836-8

  • Online ISBN: 978-981-99-5837-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics