Abstract
Object manipulation and environment interaction are of great significance for intelligent robots, especially service robots working under unstructured household and office scenarios. This paper proposes a novel approach for categorical unseen object grasping and manipulation. Different from recently popular end-to-end reinforcement learning methods, we develop models for geometric primitive abstraction of target objects, and accordingly estimate their pose as well as generate task-orientated grasp points. Such design emphasizes visual perception in guiding robotic manipulation, thereby enhancing model interpretability and reliability during implementation. In addition, we also conduct object grasping experiments both under simulation and real-world settings, which further verify the effectiveness and superiority of our method.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Babin, V., Gosselin, C.: Mechanisms for robotic grasping and manipulation. Annual Review of Control, Robotics, and Autonomous Systems 4, 573–593 (2021)
Bohg, J., Morales, A., Asfour, T., Kragic, D.: Data-driven grasp synthesis-a survey. IEEE Trans. Rob. 30(2), 289–309 (2013)
Brown, T., et al.: Language models are few-shot learners. Adv. Neural. Inf. Process. Syst. 33, 1877–1901 (2020)
Chang, A.X., et al.: Shapenet: an information-rich 3d model repository. arXiv preprint arXiv:1512.03012 (2015)
Chen, K., Dou, Q.: Sgpa: structure-guided prior adaptation for category-level 6d object pose estimation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 2773–2782 (2021)
Chu, F.J., Vela, P.A.: Deep grasp: detection and localization of grasps with deep neural networks. arXiv preprint arXiv:1802.00520 1 (2018)
Diallo, A.D., Gobee, S., Durairajah, V.: Autonomous tour guide robot using embedded system control. Procedia Comput. Sci. 76, 126–133 (2015)
Du, G., Wang, K., Lian, S., Zhao, K.: Vision-based robotic grasping from object localization, object pose estimation to grasp estimation for parallel grippers: a review. Artif. Intell. Rev. 54(3), 1677–1734 (2021)
Fan, Z., Zhu, Y., He, Y., Sun, Q., Liu, H., He, J.: Deep learning on monocular object pose detection and tracking: a comprehensive overview. ACM Comput. Surv. 55(4), 1–40 (2022)
Filonik, D., Bednarz, T., Rittenbruch, M., Foth, M.: Glance: generalized geometric primitives and transformations for information visualization in ar/vr environments. In: Proceedings of the 15th ACM SIGGRAPH Conference on Virtual-Reality Continuum and Its Applications in Industry-Volume 1, pp. 461–468 (2016)
Gonzalez-Aguirre, J.A., et al.: Service robots: trends and technology. Appl. Sci. 11(22), 10702 (2021)
Gul, F., Mir, I., Abualigah, L., Sumari, P.: Multi-robot space exploration: an augmented arithmetic approach. IEEE Access 9, 107738–107750 (2021)
He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask R-CNN. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)
Kleeberger, K., Bormann, R., Kraus, W., Huber, M.F.: A survey on learning-based robotic grasping. Current Robot. Rep. 1, 239–249 (2020)
Kuffner, J.J., LaValle, S.M.: Rrt-connect: an efficient approach to single-query path planning. In: Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065), vol. 2, pp. 995–1001. IEEE (2000)
Lobbezoo, A., Qian, Y., Kwon, H.J.: Reinforcement learning for pick and place operations in robotics: a survey. Robotics 10(3), 105 (2021)
Mahler, J., et al.: Dex-net 2.0: deep learning to plan robust grasps with synthetic point clouds and analytic grasp metrics. arXiv preprint arXiv:1703.09312 (2017)
Matas, J., James, S., Davison, A.J.: Sim-to-real reinforcement learning for deformable object manipulation. In: Conference on Robot Learning, pp. 734–743. PMLR (2018)
Mohammed, M.Q., Chung, K.L., Chyi, C.S.: Review of deep reinforcement learning-based object grasping: techniques, open challenges, and recommendations. IEEE Access 8, 178450–178481 (2020)
Ni, P., Zhang, W., Zhu, X., Cao, Q.: Pointnet++ grasping: learning an end-to-end spatial grasp generation algorithm from sparse point clouds. In: 2020 IEEE International Conference on Robotics and Automation (ICRA), pp. 3619–3625. IEEE (2020)
O’Mahony, N., Campbell, S., Krpalkova, L., Riordan, D., Walsh, J., Murphy, A., Ryan, C.: Computer vision for 3d perception: a review. In: Intelligent Systems and Applications: Proceedings of the 2018 Intelligent Systems Conference (IntelliSys) Volume 2, pp. 788–804. Springer (2019)
Rosete, A., Soares, B., Salvadorinho, J., Reis, J., Amorim, M.: Service robots in the hospitality industry: an exploratory literature review. In: Exploring Service Science: 10th International Conference, IESS 2020, Porto, Portugal, February 5–7, 2020, Proceedings 10, pp. 174–186. Springer (2020)
Sahbani, A., El-Khoury, S., Bidaud, P.: An overview of 3d object grasp synthesis algorithms. Robot. Auton. Syst. 60(3), 326–336 (2012)
Sahin, C., Garcia-Hernando, G., Sock, J., Kim, T.K.: A review on object pose recovery: from 3d bounding box detectors to full 6d pose estimators. Image Vis. Comput. 96, 103898 (2020)
Sharif, M., Erdogmus, D., Amato, C., Padir, T.: End-to-end grasping policies for human-in-the-loop robots via deep reinforcement learning. In: 2021 IEEE International Conference on Robotics and Automation (ICRA), pp. 2768–2774. IEEE (2021)
Thosar, M., Zug, S., Skaria, A.M., Jain, A.: A review of knowledge bases for service robots in household environments. In: AIC, pp. 98–110 (2018)
Tian, M., Ang, M.H., Lee, G.H.: Shape prior deformation for categorical 6d object pose and size estimation. In: Computer Vision-ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXI 16, pp. 530–546. Springer (2020)
Wang, C., et al.: Densefusion: 6d object pose estimation by iterative dense fusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 3343–3352 (2019)
Wang, H., Sridhar, S., Huang, J., Valentin, J., Song, S., Guibas, L.J.: Normalized object coordinate space for category-level 6d object pose and size estimation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2642–2651 (2019)
Wang, L., Xiang, Y., Fox, D.: Manipulation trajectory optimization with online grasp synthesis and selection. arXiv preprint arXiv:1911.10280 (2019)
Wang, Y., Tan, X., Yang, Y., Liu, X., Ding, E., Zhou, F., Davis, L.S.: 3d pose estimation for fine-grained object categories. In: Proceedings of the European Conference on Computer Vision (ECCV) Workshops (2018)
Wang, Z., Li, W., Kao, Y., Zou, D., Wang, Q., Ahn, M., Hong, S.: Hcr-net: a hybrid of classification and regression network for object pose estimation. In: IJCAI, pp. 1014–1020 (2018)
Xiang, Y., Schmidt, T., Narayanan, V., Fox, D.: Posecnn: a convolutional neural network for 6d object pose estimation in cluttered scenes. arXiv preprint arXiv:1711.00199 (2017)
Yuan, W., Hang, K., Kragic, D., Wang, M.Y., Stork, J.A.: End-to-end nonprehensile rearrangement with deep reinforcement learning and simulation-to-reality transfer. Robot. Auton. Syst. 119, 119–134 (2019)
Yurtsever, E., Lambert, J., Carballo, A., Takeda, K.: A survey of autonomous driving: common practices and emerging technologies. IEEE access 8, 58443–58469 (2020)
Acknowledgment
Supported by Key Research Project of Zhejiang Lab (No. G2021NB0AL03).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Meng, Q. et al. (2023). Vision-Based Categorical Object Pose Estimation and Manipulation. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14267. Springer, Singapore. https://doi.org/10.1007/978-981-99-6483-3_13
Download citation
DOI: https://doi.org/10.1007/978-981-99-6483-3_13
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-6482-6
Online ISBN: 978-981-99-6483-3
eBook Packages: Computer ScienceComputer Science (R0)