Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Feedback Linearization with Improved ESO for Quadrotor Attitude Control

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14270))

Included in the following conference series:

Abstract

Aiming at the nonlinear and strong coupling characteristics of quadrotor aircraft, as well as the attitude control problems with modeling errors and unknown disturbances, an improved active disturbance rejection control scheme is proposed in this paper. The feedback linearization method is used to convert the attitude dynamics model of unmanned aerial vehicles into a linear model, reducing the system error caused by small disturbance assumptions. The structure of the extended state observer (ESO) is improved so that it can simultaneously use the measurement information of angle and angular velocity to improve its estimation accuracy for time-varying disturbances; Based on the improved ESO, the design of an active disturbance rejection controller was completed and the stability of the control system was demonstrated. The simulation experimental results show that the self disturbance rejection controller based on improved ESO has strong anti-jamming and robustness.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhu, G., et al.: Output feedback adaptive dynamic surface sliding-mode control for quadrotor UAVs with tracking error constraints. Complexity 2020, 1–23 (2020)

    MATH  Google Scholar 

  2. Tayebi, A., Mcgilvray, S.: Attitude stabilization of a VTOL quadrotor aircraft. IEEE Trans. Control Syst. Technol. 14(3), 562–571 (2006)

    Article  Google Scholar 

  3. Runcharoon, K., Srichatrapimuk, V.: Sliding mode control of quadrotor. In: International Conference on Technological Advances in Electrical. IEEE (2013)

    Google Scholar 

  4. Lee, T.: Exponential stability of an attitude tracking control system on SO (3) for large-angle rotational maneuvers. Syst. Control Lett. 61(1), 231–237 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  5. Raffo, G.V., Ortega, M.G., Rubio, F.R.: Backstepping/nonlinear H∞ control for path tracking of a quadrotor unmanned aerial vehicle. In: American Control Conference. IEEE (2008)

    Google Scholar 

  6. Han, J.: The “extended state observer” of a class of uncertain systems (Chinese). Control Decis. (1995)

    Google Scholar 

  7. Gao, Z., Huang, Y., Han, J.: An alternative paradigm for control system design. In: Proceedings of the 40th Conf. Decision Control, Orlando, pp. 4578–4585 (2001)

    Google Scholar 

  8. Han, J.: From PID to active disturbance rejection control. IEEE Trans. Ind. Electron. 56(3), 900–906 (2009)

    Article  Google Scholar 

  9. Han, J.: Active Disturbance Rejection Control Technique—The Technique for Estimating and Compensating the Uncertainties. Nat. Def. Ind. Press, Beijing, China (2009)

    Google Scholar 

  10. Zhang, Y., et al.: A novel control scheme for quadrotor UAV based upon active disturbance rejection control. Aerosp. Sci. Technol. 79, 601–609 (2018)

    Article  Google Scholar 

  11. Niu, T., Xiong, H., Zhao, S.: Based on ADRC UAV longitudinal pitching Angle control research. In: 2016 IEEE Information Technology, Networking, Electronic and Automation Control Conference, pp. 21–25. IEEE, Chongqing (2016)

    Google Scholar 

  12. Yuan, Y., Cheng, L., Wang, Z., Sun, C.: Position tracking and attitude control for quadrotors via active disturbance rejection control method. Sci. China Inf. Sci. 62(1) (2019)

    Google Scholar 

  13. Ahrens, J.H., Khalil, H.K.: High-gain observers in the presence of measurement noise: a switched-gain approach. Automatica 45, 936–943 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lotufo, M.A., et al.: UAV quadrotor attitude control: an ADRC-EMC combined approach. Control. Eng. Pract. 84, 13–22 (2019)

    Article  Google Scholar 

  15. Yu, X., et al.: Anti-interference design of UAV’s attitude control system based on improved ADRC (Chinese). Electron. Opt. Control (12),027 (2020).

    Google Scholar 

  16. Xiong, J., et al.: Sliding mode dual-channel disturbance rejection attitude control for a quadrotor. IEEE Trans. Industr. Electron. 69(10), 10489–10499 (2021)

    Article  Google Scholar 

  17. Yang, W., Lu, J., Jiang, X., Wang, Y.: Design of quadrotor attitude active disturbance rejection controller based on improved ESO (Chinese). Syst. Eng. Electron. 44(12), 3792–3799 (2022)

    Google Scholar 

  18. Łakomy, K., Madonski, R.: Cascade extended state observer for active disturbance rejection control applications under measurement noise. ISA Trans. 109, 1 (2021). https://doi.org/10.1016/j.isatra.2020.09.007

    Article  Google Scholar 

  19. Sun, H., et al.: Composite control design for systems with uncertainties and noise using combined extended state observer and Kalman filter. IEEE Trans. Industr. Electron. 69(4), 4119–4128 (2022). https://doi.org/10.1109/TIE.2021.3075838

    Article  MathSciNet  Google Scholar 

  20. Wang, S., Chen, J., He, X.: An adaptive composite disturbance rejection for attitude control of the agricultural quadrotor UAV. ISA Trans. 129, 564–579 (2022). https://doi.org/10.1016/j.isatra.2022.01.012

    Article  Google Scholar 

  21. Xue, W., et al.: Extended state filter based disturbance and uncertainty mitigation for nonlinear uncertain systems with application to fuel cell temperature control. IEEE Trans. Industr. Electron. 67(12), 10682–10692 (2020). https://doi.org/10.1109/TIE.2019.2962426

    Article  Google Scholar 

  22. Zhang, H., Zhao, S., Gao, Z.: An active disturbance rejection control solution for the two-mass-spring benchmark problem. In: 2016 American Control Conference (ACC), pp. 1566–1571. IEEE, Boston (2016). https://doi.org/10.1109/ACC.2016.7525139. http://ieeexplore.ieee.org/document/7525139/

  23. Stanković, M.R., et al.: Optimised active disturbance rejection motion control with resonant extended state observer. Int. J. Control 92(8), 1815–1826 (2019). https://doi.org/10.1080/00207179.2017.1414308

    Article  MathSciNet  MATH  Google Scholar 

  24. Qi, G., Li, X., Chen, Z.: Problems of extended state observer and proposal of compensation function observer for unknown model and application in UAV. IEEE Trans. Syst. Man Cybernet. Syst. 52(5), 2899–2910 (2022). https://doi.org/10.1109/TSMC.2021.3054790

    Article  Google Scholar 

  25. X, C., et al.: Compensation function observer and its application in UAV attitude control (Chinese). Acta Aeronaut. Astronaut. Sin. 1–17 (2023)

    Google Scholar 

  26. Sharma, M., Kar, I.: Nonlinear disturbance observer based geometric control of quadrotors. Asian J. Control 23(4), 1936–1951 (2021)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zijian Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Dong, Y., Xia, Z., Wang, Y., Zhang, Z. (2023). Feedback Linearization with Improved ESO for Quadrotor Attitude Control. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14270. Springer, Singapore. https://doi.org/10.1007/978-981-99-6492-5_19

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6492-5_19

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6491-8

  • Online ISBN: 978-981-99-6492-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics