Abstract
This paper establishes a nonsmooth dynamic model for a humanoid robot with parallel mechanisms. Firstly, the constraint equations of the parallel mechanism are derived through kinematic analysis. By combining the links involved in closed-loop constraints into aggregate nodes, the topology of the robot can be equivalent to a tree structure. Equivalent physical quantities for the aggregate nodes are defined to unify their treatment with individual nodes during dynamic modeling. Subsequently, the contact and impact dynamics of the robot are modeled using constraint-based methods, with a frictional multiple impacts model employed for impacts. Due to the high degree of freedom of the robot, recursive methods are adopted to calculate the corresponding dynamic matrices. Finally, numerical examples are provided to illustrate the dynamic model of the robot. A comparison with the compliance-based methods of Simscape Multibody demonstrates that our dynamic model can reflect more realistic physical processes, providing a more accurate simulation environment for the motion control of the robot. The simulation of standing balance control is also performed based on our dynamic model.
Supported by Key Research Project of Zhejiang Lab (No. G2021NB0AL03) and Zhejiang Provincial Natural Science Foundation of China under Grant No. LQ23F030010.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
References
Moran, M.E.: The da Vinci robot. J. Endourol. 20(12), 986–990 (2007)
Kajita, S., Hirukawa, H., Harada, K., et al.: Introduction to Humanoid Robotics. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54536-8
Al-Shuka, H.F.N., Allmendinger, F., Corves, B., et al.: Modeling, stability and walking pattern generators of biped robots: a review. Robotica 32(6), 907–934 (2014)
Gienger, M., Steil, J.J.: Humanoid kinematics and dynamics: open questions and future directions. In: Goswami, A., Vadakkepat, P. (eds.) Humanoid Robotics: A Reference, pp. 893–902. Springer, Dordrecht (2019). https://doi.org/10.1007/978-94-007-7194-9_8-1
Moro, F.L., Sentis, L.: Whole-Body Control of Humanoid Robots. In: Goswami, A., Vadakkepat, P. (eds.) Humanoid Robotics: A Reference, pp. 1161–1183. Springer, Dordrecht (2019)
Sugihara, T., Yamane, K.: Reduced-order models. In: Goswami, A., Vadakkepat, P. (eds.) Humanoid Robotics: A Reference, pp. 811–848. Springer, Dordrecht (2019). https://doi.org/10.1007/978-94-007-6046-2_56
Kajita, S., Morisawa, M., Miura, K., et al.: Biped walking stabilization based on linear inverted pendulum tracking. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 4489–4496. IEEE, New York (2010)
Neuman, S.M., Koolen, T., Drean, J., et al.: Benchmarking and workload analysis of robot dynamics algorithms. In: 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 5235–5242. IEEE, New York (2019)
Singh, S., Russell, R.P., Wensing, P.M.: Efficient analytical derivatives of rigid-body dynamics using spatial vector algebra. IEEE Rob. Autom. Lett. 7(2), 1776–1783 (2022)
Jain, A.: Robot and Multibody Dynamics: Analysis and Algorithms. Springer, New York (2010). https://doi.org/10.1007/978-1-4419-7267-5
Wang, J., Liu, C., Zhao, Z.: Nonsmooth dynamics of a 3d rigid body on a vibrating plate. Multibody Syst. Dyn. 32(2), 217–239 (2014)
Ivanov, A.P.: Singularities in the rolling motion of a spherical robot. Int. J. Non-Linear Mech. 145, 104061 (2022)
Liu, C., Zhao, Z., Brogliato, B.: Frictionless multiple impacts in multibody systems. I. Theoretical framework. Proc. Royal Soc. Lond. A: Math. Phys. Eng. Sci. 464(2100), 3193–3211 (2008)
Liu, C., Zhao, Z., Brogliato, B.: Frictionless multiple impacts in multibody systems. II. Numerical algorithm and simulation results. Proc. Royal Soc. Lond. A: Math. Phys. Eng. Sci. 465(2101), 1–23 (2009)
Shi, T., Liu, Y., Wang, N., et al.: Toppling dynamics of regularly spaced dominoes in an array. J. Appl. Mech. 85(4), 041008 (2018)
Stephens, B.J., Atkeson, C.G.: Dynamic balance force control for compliant humanoid robots. In: 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1248–1255. IEEE, New York (2010)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Xiong, J., Liang, D., Wang, X., Huang, Y., Xie, A., Gu, J. (2023). Nonsmooth Dynamic Modeling of a Humanoid Robot with Parallel Mechanisms. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14270. Springer, Singapore. https://doi.org/10.1007/978-981-99-6492-5_26
Download citation
DOI: https://doi.org/10.1007/978-981-99-6492-5_26
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-6491-8
Online ISBN: 978-981-99-6492-5
eBook Packages: Computer ScienceComputer Science (R0)