Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Integrated Device for Controllable Droplet Generation and Detection on Open Array Chip

  • Conference paper
  • First Online:
Intelligent Robotics and Applications (ICIRA 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14274))

Included in the following conference series:

  • 802 Accesses

Abstract

The open array chip is an incredibly valuable tool for analyzing single molecule levels. Its efficiency, speed, compatibility, and precision make it an essential part of this process. However, efficient sample addition has become a significant challenge in the development of open array chips due to the coupling of the solid-liquid interface and the need for high-precision control. To address this challenge, we have developed an integrated adding sample device using technology of generates and detects controllable droplets array based on an open array chip with a biomimetic structure. This device combines a microfluidic chip, image detection, and smear speed regulation. We have studied the factors that affect the efficiency of sample loading, such as the number, speed and fluctuation of smears, and microwell size. The experiments have shown that the open array chip with the microwell’s diameter of 350 µm can generate arrays of ~470/cm2 ~8 nL droplets, significantly reducing controlled speed fluctuation errors by7.24% and volume fluctuation errors by 24% compared to traditional manual ways. The device has also displayed excellent performance on chips with microwell diameters of 120, 350, 700, and 1300 µm, respectively, with a notable first-time success rate of up to 91% on chips with microwell diameters of 120 µm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Du, G., Fang, Q., den Toonder, J.M.J.: Microfluidics for cell-based high throughput screening platforms—a review. Anal. Chim. Acta 903, 36–50 (2016)

    Article  Google Scholar 

  2. Zhou, W.M., et al.: Microfluidics applications for high-throughput single cell sequencing. J. Nanobiotechnol. 19(1), 312 (2021)

    Article  Google Scholar 

  3. Klein, A.M., et al.: Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161, 1187–1201 (2015)

    Article  Google Scholar 

  4. Cui, X., et al.: A fluorescent microbead-based microfluidic immunoassay chip for immune cell cytokine secretion quantification. Lab Chip 18(3), 522–531 (2018)

    Article  Google Scholar 

  5. Källberg, J., Xiao, W., Van Assche, D., Baret, J., Taly, V.: Frontiers in single cell analysis: multimodal technologies and their clinical perspectives. Lab Chip 22, 243–2422 (2022)

    Article  Google Scholar 

  6. Xu, J.G., Huang, M.S., Wang, H.F., Fang, Q.: Forming a large-scale droplet array in a microcage array chip for high-throughput screening. Anal. Chem. 91(16), 10757–10763 (2019)

    Article  Google Scholar 

  7. Yin, K., et al.: Femtosecond laser thermal accumulation-triggered micro-/nanostructures with patternable and controllable wettability towards liquid manipulating. Nanomicro Lett. 14(1), 97 (2022)

    MathSciNet  Google Scholar 

  8. Wu, D., et al.: 3D microfluidic cloth-based analytical devices on a single piece of cloth by one-step laser hydrophilicity modification. Lab Chip 21(24), 4805–4813 (2021)

    Article  Google Scholar 

  9. Rezaei, M., Radfar, P., Winter, M., McClements, L., Thierry, B., Warkiani, M.E.: Simple-to-operate approach for single cell analysis using a hydrophobic surface and nanosized droplets. Anal. Chem. 93(10), 4584–4592 (2021)

    Article  Google Scholar 

  10. Zhou, Y., et al.: Single-cell sorting using integrated pneumatic valve droplet microfluidic chip. Talanta 253, 124044 (2023)

    Article  Google Scholar 

  11. Easley, C.J., et al.: A fully integrated microfluidic genetic analysis system with sample-in-answer-out capability. Proc. Natl. Acad. Sci. U.S.A. 103, 19272–19277 (2006)

    Google Scholar 

  12. Dangla, R., Kayi, S.C., Baroud, C.N.: Droplet microfluidics driven by gradients of confinement. Proc. Natl. Acad. Sci. U.S.A. 110, 853–858 (2013)

    Article  Google Scholar 

  13. He, Y., Lu, Z., Fan, H., Zhang, T.: A photofabricated honeycomb micropillar array for loss-free trapping of microfluidic droplets and application to digital PCR. Lab Chip 21, 3933–3941 (2021)

    Article  Google Scholar 

  14. Lin, H.Y., et al.: Highly efficient self-assembly of metallacages and their supramolecular catalysis behaviors in microdroplets. Angew. Chem. Int. Ed. Engl. 23, e202301900 (2023)

    Google Scholar 

  15. Gao, Y., et al.: An enzyme-loaded metal-organic framework-assisted microfluidic platform enables single-cell metabolite analysis. Angew. Chem. Int. Ed. Engl. 5, e202302000 (2023)

    Google Scholar 

  16. Du, L., Liu, H., Zhou, J.: Picoliter droplet array based on bioinspired microholes for in situ single-cell analysis. Microsyst. Nanoeng. 6, 33 (2020)

    Article  Google Scholar 

  17. Du, L., Riaud, A., Zhou, J.: Smearing observation of picoliter droplets pinning on bio-inspired negative lotus leaf replicas. IEEE Trans. Nanotechnol. 19, 102–106 (2020)

    Article  Google Scholar 

  18. Du, L., Wei, Y., Riaud, A., Zhou, J.: Anti-lotus leaf effect: smearing millions of picoliter droplets on bio-inspired artificial lotus leaf. In: IEEE 19th International Conference on Nanotechnology (IEEE-NANO), Macao, China, pp. 223–226 (2019)

    Google Scholar 

  19. Rong, N., Chen, K., Shao, J., Ouyang, Q., Luo, C.: A 3D scalable chamber-array chip for digital LAMP. Anal. Chem. 95(20), 7830–7838 (2023)

    Article  Google Scholar 

  20. Lin, D., et al.: One-step fabrication of droplet arrays using a biomimetic structural chip. ACS Appl. Mater. Interfaces 15(13), 17413–17420 (2023)

    Article  Google Scholar 

  21. Liu, M., Wang, S., Jiang, L.: Nature-inspired superwettability systems. Nat. Rev. Mater. 2, 17036 (2017)

    Google Scholar 

  22. Ren, W.: Wetting transition on patterned surfaces: transition states and energy barriers. Langmuir 30, 2879–2885 (2014)

    Article  Google Scholar 

  23. Xin, B., Hao, J.: Reversibly switchable wettability. Chem. Soc. Rev. 39, 769–782 (2010)

    Article  Google Scholar 

  24. Xue, Y., Chu, S., Lv, P., Duan, H.: Importance of hierarchical structures in wetting stability on submersed superhydrophobic surfaces. Langmuir 28, 9440–9450 (2012)

    Article  Google Scholar 

  25. Yoshimitsu, Z., Nakajima, A., Watanabe, T., Hashimoto, K.: Effects of surface structure on the hydrophobicity and sliding behavior of water droplets. Langmuir 18, 5818–5822 (2002)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China under Grant No. 62104148 and No. 61874033, and the State Key Laboratory of ASIC and Systems, Fudan University under Grant No. 2021KF001 and No. 2021MS001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lin Du .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of Interests

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, Z., Wang, J., Li, Y., Zhou, J., Du, L. (2023). Integrated Device for Controllable Droplet Generation and Detection on Open Array Chip. In: Yang, H., et al. Intelligent Robotics and Applications. ICIRA 2023. Lecture Notes in Computer Science(), vol 14274. Springer, Singapore. https://doi.org/10.1007/978-981-99-6501-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-6501-4_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-6500-7

  • Online ISBN: 978-981-99-6501-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics