Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

The Ordered Covering Problem in Distance Geometry

  • Conference paper
  • First Online:
Bioinformatics Research and Applications (ISBRA 2023)

Abstract

This study is motivated by the Discretizable Molecular Distance Geometry Problem (DMDGP), a specific category in Distance Geometry, where the search space is discrete. We address the challenge of ordering the DMDGP constraints, a critical factor in the performance of the state-of-the-art SBBU algorithm. To this end, we formalize the constraint ordering problem as a vertex cover problem, which diverges from traditional covering problems due to the substantial importance of the sequence of vertices in the covering. In order to solve the covering problem, we propose a greedy heuristic and compare it to the ordering of the SBBU. The computational results indicate that the greedy heuristic outperforms the SBBU ordering by an average factor of 1,300\(\times \).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cassioli, A., Günlük, O., Lavor, C., Liberti, L.: Discretization vertex orders in distance geometry. Disc. Appl. Math. 197, 27–41 (2015)

    Article  Google Scholar 

  2. Gonçalves, D.S., Lavor, C., Liberti, L., Souza, M.: A new algorithm for the k dmdgp subclass of distance geometry problems with exact distances. Algorithmica 83(8), 2400–2426 (2021)

    Article  Google Scholar 

  3. Lavor, C., Liberti, L., Maculan, N., Mucherino, A.: The discretizable molecular distance geometry problem. Comput. Optim. Appl. 52, 115–146 (2012)

    Article  Google Scholar 

  4. Liberti, L., Lavor, C., Maculan, N.: A branch-and-prune algorithm for the molecular distance geometry problem. Int. Trans. Oper. Res. 15(1), 1–17 (2008)

    Article  Google Scholar 

  5. Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications. SIAM Rev. 56(1), 3–69 (2014)

    Article  Google Scholar 

  6. Liberti, L., Masson, B., Lee, J., Lavor, C., Mucherino, A.: On the number of realizations of certain henneberg graphs arising in protein conformation. Disc. Appl. Math. 165, 213–232 (2014)

    Article  Google Scholar 

  7. Mucherino, A., Lavor, C., Liberti, L.: Exploiting symmetry properties of the discretizable molecular distance geometry problem. J. Bioinf. Comput. Biol. 10(03), 1242009 (2012)

    Article  Google Scholar 

  8. Wüthrich, K.: Protein structure determination in solution by nuclear magnetic resonance spectroscopy. Science 243, 4887 (1989)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Brazilian research agencies FAPESP and CNPq, and the comments made by the reviewers.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Souza .

Editor information

Editors and Affiliations

Ethics declarations

Conflict of interest

No conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Souza, M., Maia, N., Lavor, C. (2023). The Ordered Covering Problem in Distance Geometry. In: Guo, X., Mangul, S., Patterson, M., Zelikovsky, A. (eds) Bioinformatics Research and Applications. ISBRA 2023. Lecture Notes in Computer Science(), vol 14248. Springer, Singapore. https://doi.org/10.1007/978-981-99-7074-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7074-2_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7073-5

  • Online ISBN: 978-981-99-7074-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics