Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Improving Autonomous Robot Gripper Position on Lifting Trash Objects based on Object Geometry Parameters and Centroid Modification

  • Conference paper
  • First Online:
Advances in Visual Informatics (IVIC 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14322))

Included in the following conference series:

Abstract

Waste management in the modern urban era requires a more advanced and efficient approach. Autonomous robots have emerged as an innovative solution to address this challenge. The robot’s success in collecting trash cannot be separated from the ability of the robot’s gripper to pick up the trash. This study aims to improve the positioning accuracy of the gripper robot in lifting trash objects. If the geometrical parameters of the objects are different, there is a possibility that the centroid points are in the 2D area so that the gripper robot cannot grip and lift the trash objects. Likewise, if there is a difference in weight, the robot gripper will have difficulty lifting the object because the object is one-sided. For this reason, removing trash objects needs to be improved by considering several parameters, not only the centroid parameter. A method for lifting trash objects is proposed based on several parameters: geometry, centroid and trash object type. The proposed method is Object Geometry Parameters and Centroid Modification (OGP-CM). The test results show that the OGP-CM method can set the centroid position based on the geometric parameters and the type of trash. On the same object geometry, the improvement in accuracy is relatively low, ranging from 0.46% to 1.72%. A relatively great improvement in accuracy occurs for different object geometries, ranging from 11.54% to 13.09%. Thus, improving the position of the autonomous robot gripper in lifting objects using OGP-CM has been successfully carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Kulshreshtha, M., Chandra, S.S., Randhawa, P., Tsaramirsis, G., Khadidos, A., Khadidos, A.O.: OATCR: outdoor autonomous trash-collecting robot design using YOLOv4-tiny. Electronics 10(18), 2292 (2021)

    Article  Google Scholar 

  2. Fang, B., et al.: Artificial intelligence for waste management in smart cities: a review. Environ. Chem. Lett. 21(4), 1959–1989 (2023)

    Article  Google Scholar 

  3. Kshirsagar, P.R., et al.: Artificial intelligence-based robotic technique for reusable waste materials. Comput. Intell. Neurosci. 2022, 1–9 (2022)

    Google Scholar 

  4. Fuchikawa, Y., et al.: Development of a Vision System for an Outdoor Service Robot to Collect Trash on Streets, pp. 100–105 (2005)

    Google Scholar 

  5. Salvini, P., Teti, G., Spadoni, E., Laschi, C., Mazzolai, B., Dario, P.: The Robot DustCart. IEEE Robot. Autom. Mag. 18(1), 59–67 (2011)

    Article  Google Scholar 

  6. Yang, M., Thung, G.: Classification of Trash for Recyclability Status. In: CS229Project Report, no. 1, p. 3 (2016)

    Google Scholar 

  7. Hulyalkar, S., Deshpande, R., Makode, K., Kajale, S.: Implementation of smartbin using convolutional neural networks. Int. Res. J. Eng. Technol. 5(4), 3352–3358 (2018)

    Google Scholar 

  8. Salimi, I., Bayu Dewantara, B.S., Wibowo, I.K.: Visual-based trash detection and classification system for smart trash bin robot. In: International Electronics Symposium Knowledge Creative Intelligent Computing IES-KCIC 2018 – Proceedings, pp. 378–383 (2019)

    Google Scholar 

  9. Adedeji, O., Wang, Z.: Intelligent waste classification system using deep learning convolutional neural network. Procedia Manuf. 35, 607–612 (2019)

    Article  Google Scholar 

  10. Raza, S M., Hassan, S.M.G.. Hassan, S.A., Shin, S.Y.: Real-Time Trash Detection for Modern Societies using CCTV to Identifying Trash by utilizing Deep Convolutional Neural Network (2021)

    Google Scholar 

  11. Funch, O.I., Marhaug, R., Kohtala, S., Steinert, M.: Detecting glass and metal in consumer trash bags during waste collection using convolutional neural networks. Waste Manag. 119, 30–38 (2021)

    Article  Google Scholar 

  12. Longo, E., Sahin, F.A., Redondi, A.E.C., Bolzan, P., Bianchini, M., Maffei, S.: A 5G-enabled smart waste management system for university campus. Sensors 21(24), 8278 (2021)

    Article  Google Scholar 

  13. Mao, W.L., Chen, W.C., Wang, C.T., Lin, Y.H.: Recycling waste classification using optimized convolutional neural network. Resour. Conserv. Recycl. 164(July 2020), 05132 (2021)

    Google Scholar 

  14. Ren, C., Jung, H., Lee, S., Jeong, D.: Coastal waste detection based on deep convolutional neural networks. Sensors 21(21), 7269 (2021)

    Article  Google Scholar 

  15. Yuan, Z., Liu, J.: A hybrid deep learning model for trash classification based on deep trasnsfer learning. J. Electr. Comput. Eng. 2022, 1–9 (2022)

    Article  Google Scholar 

  16. Faisal, M., et al.: Faster R-CNN algorithm for detection of plastic garbage in the ocean: a case for turtle preservation. Math. Probl. Eng. 2022, 1–11 (2022)

    Google Scholar 

  17. Rahman, M.W., Islam, R., Hasan, A., Bithi, N.I., Hasan, M.M., Rahman, M.: Intelligent waste management system using deep learning with IoT. J. King Saud Univ. – Comput. Inf. Sci. 34(5), 2072–2087 (2022)

    Google Scholar 

  18. Hernandez, J., et al.: Current designs of robotic arm grippers: a comprehensive systematic review. Robotics 12(1), 5 (2023)

    Article  Google Scholar 

  19. Ni, J., Chen, J., Wu, Y., Chen, Z., Liang, M.: Method to determine the centroid of non-homogeneous polygons based on suspension theory. ISPRS Int. J. Geo-Information 11(4), 233 (2022)

    Article  Google Scholar 

  20. Naf’an, E., Sulaiman, R., Ali, N.M.: Optimization of trash identification on the house compound using a convolutional neural network (CNN) and sensor system. Sensors 23(3), 1499 (2023)

    Article  Google Scholar 

Download references

Acknowledgment

This research is fully supported by Research Grant number TAP=K007341 of Universiti Kebangsaan Malaysia (UKM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Riza Sulaiman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Naf’an, E., Sulaiman, R., Ali, N.M. (2024). Improving Autonomous Robot Gripper Position on Lifting Trash Objects based on Object Geometry Parameters and Centroid Modification. In: Badioze Zaman, H., et al. Advances in Visual Informatics. IVIC 2023. Lecture Notes in Computer Science, vol 14322. Springer, Singapore. https://doi.org/10.1007/978-981-99-7339-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7339-2_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7338-5

  • Online ISBN: 978-981-99-7339-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics