Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Delay Optimization for Consensus Communication in Blockchain-Based End-Edge-Cloud Network

  • Conference paper
  • First Online:
Advanced Parallel Processing Technologies (APPT 2023)

Abstract

With the rapid development of smart IoT technology, various innovative mobile applications improve many aspects of our daily life. End-edge-cloud collaboration provides data transmission in connecting heterogeneous IoT devices and machines with improvements in high quality of service and capacity. However, the end-edge cloud architecture still remains some challenges including the risks of data privacy and tolerance transmission delay. Blockchain is a promising solution to enable data processing in a secure and efficient way. In this paper, blockchain is considered as an infrastructure of the end-edge-cloud network and the time cost of the PBFT consensus is analyzed from the perspective of the leader’s position. Considering the concurrent processing of tasks in cellular networks, multi-intelligent deep reinforcement learning is used to train the assignment strategy of the edge server. The numerical results show that the proposed method can achieve better performance improvement in terms of the time consumption of data processing.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Lu, Y., Huang, X., Zhang, K., Maharjan, S., Zhang, Y.: Blockchain empowered asynchronous federated learning for secure data sharing in internet of vehicles. IEEE Trans. Veh. Technol. 69(4), 4298–4311 (2020)

    Article  Google Scholar 

  2. Maksymyuk, T., et al.: Blockchain-empowered framework for decentralized network management in 6G. IEEE Commun. Mag. 58(9), 86–92 (2021)

    Article  Google Scholar 

  3. Shubhani, A., Neeraj, K., Sudeep, T.: Blockchain-envisioned UAV communication using 6G networks: open issues, use cases, and future directions. IEEE Internet Things J. 8(7) (2021)

    Google Scholar 

  4. Jiang, M., Wu, T., Wang, Z., Gong, Y., Zhang, L., Liu, R.P.: A multi-intersection vehicular cooperative control based on end-edge-cloud computing. IEEE Trans. Veh. Technol. 71(3), 2459–2471 (2022)

    Article  Google Scholar 

  5. Duan, S., et al.: Distributed artificial intelligence empowered by end-edge-cloud computing: a survey. IEEE Commun. Surv. Tutor. 25(1), 591–624 (2023)

    Article  Google Scholar 

  6. Zhang, S., Wang, Z., Zhou, Z., Wang, Y., Zhang, H., et al.: Blockchain and federated deep reinforcement learning based secure cloud-edge-end collaboration in power IoT. IEEE Wirel. Commun. 29(2), 84–91 (2022)

    Article  Google Scholar 

  7. Mafakheri, B., Heider-Aviet, A., Riggio, R., Goratti, L.: Smart contracts in the 5G roaming architecture: the fusion of blockchain with 5G networks. IEEE Commun. Mag. 59(3), 77–83 (2021)

    Article  Google Scholar 

  8. Li, W., Su, Z., Li, R., Zhang, K., Wang, Y.: Blockchain-based data security for artificial intelligence applications in 6G networks. IEEE Netw. 34(6), 31–37 (2020)

    Article  Google Scholar 

  9. Wang, X., Zhao, Y., Qiu, C., Liu, Z., Nie, J., Leung, V.C.M.: InFEDge: a blockchain-based incentive mechanism in hierarchical federated learning for end-edge-cloud communications. IEEE J. Sel. Areas Commun. 40(12), 3325–3342 (2022)

    Article  Google Scholar 

  10. Ding, Y., Li, K., Liu, C., Li, K.: InFEDGe: a blockchain-based incentive mechanism in hierarchical federated learning for end-edge-cloud communications. IEEE Trans. Parallel Distrib. Syst. 33(6), 1503–1519 (2022)

    Article  Google Scholar 

  11. Feng, J., Yu, F.R., Pei, Q., Du, J., Zhu, L.: Joint optimization of radio and computational resources allocation in blockchain-enabled mobile edge computing systems. IEEE Trans. Wirel. Commun. 19(6), 4321–4334 (2020)

    Article  Google Scholar 

  12. Zhang, X., Peng, M., Yan, S., Sun, Y.: Joint communication and computation resource allocation in fog-based vehicular networks. IEEE Internet Things J. 9(15), 13195–13208 (2022)

    Article  Google Scholar 

  13. Yang, Z., Liang, B., Ji, W.: An intelligent end-edge-cloud architecture for visual IoT-assisted healthcare systems. IEEE Internet Things J. 8(23), 16779–16786 (2021)

    Article  Google Scholar 

  14. Liao, H., Jia, Z., Zhou, Z., Wang, Y., Zhang, H., et al.: Cloud-edge-end collaboration in air-ground integrated power IoT: a semi-distributed learning approach. IEEE Trans. Ind. Inform. 18(11), 8047–8057 (2022)

    Article  Google Scholar 

  15. Li, M., Yu, F.R., Si, P., Wu, W., Zhang, Y.: Resource optimization for delay-tolerant data in blockchain-enabled IoT with edge computing: a deep reinforcement learning approach. IEEE Internet Things J. 7(10), 9399–9412 (2020)

    Article  Google Scholar 

  16. Liu, M., Yu, F.R., Teng, Y., Leung, V.C.M., Song, M.: Performance optimization for blockchain-enabled industrial internet of things (IIoT) systems: a deep reinforcement learning approach. IEEE Trans. Ind. Inform. 15(6), 3559–3570 (2019)

    Article  Google Scholar 

  17. Qu, G., Cui, N., Wu, H., Li, R., Ding, Y.: ChainFL: a simulation platform for joint federated learning and blockchain in edge/cloud computing environments. IEEE Trans. Ind. Inform. 18(5), 3572–3581 (2022)

    Article  Google Scholar 

  18. Lu, Y., Huang, X., Zhang, K., Maharjan, S., Zhang, Y.: Low-latency federated learning and blockchain for edge association in digital twin empowered 6G networks. IEEE Trans. Ind. Inform. 17(7), 5098–5107 (2021)

    Article  Google Scholar 

  19. Castro, M., Liskov, B.: Practical Byzantine fault tolerance. In: Proceedings of the Third Symposium on Operating Systems Design and Implementation, vol. 17, no. 7, pp. 173–186 (1999)

    Google Scholar 

  20. Cao, B., Wang, X., Zhang, W., Song, H., Lv, Z.: A many-objective optimization model of industrial internet of things based on private blockchain. IEEE Netw. 34(5), 78–83 (2020)

    Article  Google Scholar 

  21. Chunlin, L., Jing, Z., Xianmin, Y., Luo, Y.: Lightweight blockchain consensus mechanism and storage optimization for resource constrained IoT devices. Inf. Process. Manag. 58(4), 102602 (2021)

    Article  Google Scholar 

  22. Ryan, L., Yi, W., Aviv, T., Jean, H., Pieter, A., Igor, M.: Multi-agent actor-critic for mixed cooperative-competitive environments. In: 31st International Conference on Neural Information Processing Systems (NIPS 2017). Curran Associates Inc., Red Hook (2017)

    Google Scholar 

  23. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. In: 4th International Conference on Learning Representations, ICLR 2016 (2016)

    Google Scholar 

  24. Barto, A.G., Sutton, R.S., Anderson, C.W.: Neuronlike adaptive elements that can solve difficult learning control problems. IEEE Trans. Syst. Man Cybern. 13(5), 834–846 (1983)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R &D Program of China under Grant 2018YFB1402700, and in part by the National Natural Science Foundation of China under Grant 61690202.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shengcheng Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, S., Wang, S., Tsai, WT., Zhang, Y. (2024). Delay Optimization for Consensus Communication in Blockchain-Based End-Edge-Cloud Network. In: Li, C., Li, Z., Shen, L., Wu, F., Gong, X. (eds) Advanced Parallel Processing Technologies. APPT 2023. Lecture Notes in Computer Science, vol 14103. Springer, Singapore. https://doi.org/10.1007/978-981-99-7872-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-7872-4_14

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-7871-7

  • Online ISBN: 978-981-99-7872-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics