Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Compliant Elbow Exoskeleton with an SEA at Interaction Port

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14450))

Included in the following conference series:

Abstract

In recent years, various series elastic actuators (SEAs) have been proposed to enhance the flexibility and safety of wearable exoskeletons. This paper proposes an SEA composed of wave springs and installs it at human-robot interaction port. Considering the hysteresis nonlinear characteristics of the SEA, displacement-force models of the SEA are established based on long short-term memory (LSTM) model and T-S fuzzy model in a nonlinear auto-regression moving average with exogenous input (NARMAX) structure. Based on the established models, the SEA can effectively serve as an interaction force sensor. Subsequently, the SEA is integrated into an elbow exoskeleton, and a compliant admittance controller is designed based on the displacement-force model. Experimental results demonstrate that the proposed approach effectively enhances the flexibility of human-robot interaction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Qiao, H., Wu, Y.X., Zhong, S.L., Yin, P.J., Chen, J.H.: Brain-inspired intelligent robotics: theoretical analysis and systematic application. Mach. Intell. Res. 20(1), 1–18 (2023)

    Article  Google Scholar 

  2. Weiss, A., Wortmeier, A.K., Kubicek, B.: Robots in industry 4.0: a roadmap for future practice studies on human-robot collaboration. IEEE Trans. Hum. Mach. Syst. 51(4), 335–345 (2021)

    Article  Google Scholar 

  3. Cao, R., Cheng, L., Li, H.: Passive model predictive impedance control for safe physical human-robot interaction. IEEE Trans. Cogn. Dev. Syst. (2023). https://doi.org/10.1109/TCDs.2023.3275217

    Article  Google Scholar 

  4. Cheng, L., Xia, X.: A survey of intelligent control of upper limb rehabilitation exoskeleton. Robot 44(6), 750–768 (2022)

    Google Scholar 

  5. Qian, W., et al.: CURER: a lightweight cable-driven compliant upper limb rehabilitation exoskeleton robot. IEEE/ASME Trans. Mechatron. 28(3), 1730–1741 (2023)

    Article  Google Scholar 

  6. Liang, J., Zhang, Q., Liu, Y., Wang, T., Wan, G.: A review of the design of load-carrying exoskeletons. Sci. China Technol. Sci. 65(9), 2051–2067 (2022)

    Article  Google Scholar 

  7. Samper-Escudero, J.L., Coloma, S., Olivares-Mendez, M.A., Gonzalez, M.A.S.U., Ferre, M.: A compact and portable exoskeleton for shoulder and elbow assistance for workers and prospective use in space. IEEE Trans. Hum. Mach. Syst. 53(4), 668–677 (2022)

    Article  Google Scholar 

  8. Grazi, L., Trigili, E., Proface, G., Giovacchini, F., Crea, S., Vitiello, N.: Design and experimental evaluation of a semi-passive upper-limb exoskeleton for workers with motorized tuning of assistance. IEEE Trans. Neural Syst. Rehabil. Eng. 28(10), 2276–2285 (2020)

    Article  Google Scholar 

  9. Zimmermann, Y., et al.: Digital Guinea Pig: merits and methods of human-in-the-loop simulation for upper-limb exoskeletons. In: 2022 International Conference on Rehabilitation Robotics, Rotterdam, Netherlands, pp. 1–6, IEEE (2022)

    Google Scholar 

  10. Zhang, Y., Cheng, L., Cao, R., Li, H., Yang, C.: A neural network based framework for variable impedance skills learning from demonstrations. Robot. Auton. Syst. 160, 104312 (2023)

    Article  Google Scholar 

  11. Li, J.F., Cao, Q., Dong, M.J., Zhang, C.: Compatibility evaluation of a 4-DOF ergonomic exoskeleton for upper limb rehabilitation. Mech. Mach. Theor. 156, 104146 (2021)

    Article  Google Scholar 

  12. He, C., Xiong, C.H., Chen, Z.J., Fan, W., Huang, X.L., Fu, C.L.: Preliminary assessment of a postural synergy-based exoskeleton for post-stroke upper limb rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 29, 1795–1805 (2021)

    Article  Google Scholar 

  13. Ang, B.W.K., Yeow, C.H.: Design and modeling of a high force soft actuator for assisted elbow flexion. IEEE Robot. Autom. Lett. 5(2), 3731–3736 (2020)

    Article  Google Scholar 

  14. Jarrett, C., McDaid, A.J.: Robust control of a cable-driven soft exoskeleton joint for intrinsic human-robot interaction. IEEE Trans. Neural Syst. Rehabil. Eng. 25(7), 976–986 (2017)

    Article  Google Scholar 

  15. Gao, G., Liang, J., Liarokapis, M.: Mechanically programmable jamming based on articulated mesh structures for variable stiffness robots. In: 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems, Kyoto, Japan, pp. 11586–11593. IEEE (2022)

    Google Scholar 

  16. Trigili, E., et al.: Design and experimental characterization of a shoulder elbow exoskeleton with compliant joints for post-stroke rehabilitation. IEEE/ASME Trans. Mechatron. 24(4), 1485–1496 (2019)

    Article  Google Scholar 

  17. Li, J., Li, S.Q., Tian, G.H., Shang, H.C.: Muscle tension training method for series elastic actuator (SEA) based on gain-scheduled method. Robot. Auton. Syst. 121, 103253 (2019)

    Article  Google Scholar 

  18. Li, S.H., Shi, Y., Hu, L.N., Sun, Z.: A generalized model predictive control method for series elastic actuator driven exoskeleton robots. Comput. Electr. Eng. 94, 107328 (2021)

    Article  Google Scholar 

  19. Sun, N., Cheng, L., Xia, X.: Design and hysteresis modeling of a miniaturized elastomer-based clutched torque sensor. IEEE Trans. Instrum. Measur. 71, 7501409 (2022)

    Article  Google Scholar 

  20. Lin, Y.J., Chen, Z., Yao, B.: Decoupled torque control of series elastic actuator with adaptive robust compensation of time-varying load-side dynamics. IEEE Trans. Industr. Electron. 67(7), 5604–5614 (2019)

    Article  Google Scholar 

  21. Aguirre-Ollinger, G., Yu, H.Y.: Lower-limb exoskeleton with variable-structure series elastic actuators: phase-synchronized force control for gait asymmetry correction. IEEE Trans. Rob. 37(3), 763–779 (2020)

    Article  Google Scholar 

  22. Pan, J., et al.: NESM-\(\gamma \): an upper-limb exoskeleton with compliant actuators for clinical deployment. IEEE Robot. Autom. Lett. 7(3), 7708–7715 (2022)

    Article  MathSciNet  Google Scholar 

  23. Chen, T., Casas, R., Lum, P.S.: An elbow exoskeleton for upper limb rehabilitation with series elastic actuator and cable-driven differential. IEEE Trans. Rob. 35(6), 1464–1474 (2019)

    Article  Google Scholar 

  24. Wu, K.Y., Su, Y.Y., Yu, Y.L., Lin, C.H., Lan, C.C.: A 5-degrees-of-freedom lightweight elbow-wrist exoskeleton for forearm fine-motion rehabilitation. IEEE/ASME Trans. Mechatron. 24(6), 2684–2695 (2019)

    Article  Google Scholar 

  25. Buerger, S.P., Hogan, N.: Complementary stability and loop shaping for improved human-robot interaction. IEEE Trans. Rob. 23(2), 232–244 (2007)

    Article  Google Scholar 

  26. Zou, Y., Cheng, L., Li, Z.: A multimodal fusion model for estimating human hand force: comparing surface electromyography and ultrasound signals. IEEE Robot. Autom. Mag. 29(4), 10–24 (2022)

    Article  Google Scholar 

  27. Chen, S., Billings, S.A.: Representation of non-linear systems: the NARMAX model. Int. J. Control 49(3), 1012–1032 (1999)

    Google Scholar 

  28. Liu, W., Cheng, L., Hou, Z.G., Yu, J., Tan, M.: An inversion-free predictive controller for piezoelectric actuators based on a dynamic linearized neural network model. IEEE/ASME Trans. Mechatron. 21(1), 214–226 (2016)

    Google Scholar 

  29. Xia, X.Z., Cheng, L.: Adaptive Takagi-Sugeno fuzzy model and model predictive control of pneumatic artificial muscles. Sci. China Technol. Sci. 64(10), 2272–2280 (2021). https://doi.org/10.1007/s11431-021-1887-6

    Article  Google Scholar 

  30. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  31. Gao, H., et al.: Trajectory prediction of cyclist based on dynamic Bayesian network and long short-term memory model at unsignalized intersections. Sci. China Inf. Sci. 64(7), 1–13 (2021). https://doi.org/10.1007/s11432-020-3071-8

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by National Key Research & Development Program (Grant No. 2022YFB4703204) and National Natural Science Foundation of China (Grant Nos. 62025307 and 62311530097).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xia, X., Han, L., Li, H., Zhang, Y., Liu, Z., Cheng, L. (2024). A Compliant Elbow Exoskeleton with an SEA at Interaction Port. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14450. Springer, Singapore. https://doi.org/10.1007/978-981-99-8070-3_12

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8070-3_12

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8069-7

  • Online ISBN: 978-981-99-8070-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics