Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Nonlinear Multiple-Delay Feedback Based Kernel Least Mean Square Algorithm

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Abstract

In this paper, a novel algorithm called nonlinear multiple-delay feedback kernel least mean square (NMDF-KLMS) is proposed by introducing a nonlinear multiple-delay into the framework of multikernel adaptive filtering. The proposed algorithm incorporates the nonlinear multiple-delay to enhance the filtering performance in comparison with the kernel adaptive filtering algorithm using linear feedback. Furthermore, for NMDF-KLMS, the theoretical mean-square convergence analyses is also conducted. Simulation results under chaotic time-series prediction and real-world data applications show that NMDF-KLMS achieves a faster convergence rate and superior filtering accuracy.

This work is supported in part by the National Natural Science Foundation of China(Grant no. 62201478 and 61971100), in part by the Southwest University of Science and Technology Doctor Fund (Grant no. 20zx7119), in part by the Sichuan Science and Technology Program (Grant no. 2022YFG0148), and in part by the Heilongjiang Provincial Science and Technology Program (No. 2022ZX01A16).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    NMDF-KLMS-CC stands for NMDF-KLMS sparsified by the CC sparsification method.

  2. 2.

    http://www.sidc.be/silso/datafiles.

References

  1. Apsemidis, A., Psarakis, S., Moguerza, J.M.: A review of machine learning kernel methods in statistical process monitoring. Comput. Indust. Eng. 142 106376 (2020)

    Google Scholar 

  2. Rojo-Álvarez, J.L. Martínez-Ramón, M., Muñoz-Marí, J., Camps-Valls, G.: Kernel Feature Extraction in Signal Processing (2018)

    Google Scholar 

  3. Príncipe, J.C., Liu, W., Haykin, S.: Kernel Adaptive Filtering: A Comprehensive Introduction. John Wiley & Sons (2011)

    Google Scholar 

  4. Liu, W., Pokharel, P.P., Principe, J.C.: The kernel least-mean-square algorithm. IEEE Trans. Signal Process. 56(2), 543–554 (2008)

    Google Scholar 

  5. Liu, W., Príncipe, J.C.: Kernel affine projection algorithms. EURASIP J. Adv. Signal Process. 2008, 1–12 (2008)

    Google Scholar 

  6. Engel, Y., Mannor, S., Meir, R.: The kernel recursive least-squares algorithm. IEEE Trans. Signal Process. 52(8), 2275–2285 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fan, H., Song, Q.: A linear recurrent kernel online learning algorithm with sparse updates. Neural Netw. 50, 142–153 (2014)

    Article  MATH  Google Scholar 

  8. Zhao, J., Liao, X., Wang, S., Chi, K.T.: Kernel least mean square with single feedback. IEEE Signal Process. Lett. 22(7), 953–957 (2014)

    Google Scholar 

  9. Wang, S., Zheng, Y., Ling, C.: Regularized kernel least mean square algorithm with multiple-delay feedback. IEEE Signal Process. Lett. 23(1), 98–101 (2015)

    Article  Google Scholar 

  10. Wang, S., Wang, W., Duan, S., Wang, L.: Kernel recursive least squares with multiple feedback and its convergence analysis. IEEE Trans. Circuits Syst. II Express Briefs 64(10), 1237–1241 (2017)

    Google Scholar 

  11. Wang, Y., Jin, X., Yin, Y.: Using nonlinear feedback control to improve aircraft nose landing gear shimmy performance. Meccanica 57(9), 2395–2411 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gao, S., Zhang, X.: Course keeping control strategy for large oil tankers based on nonlinear feedback of swish function. Ocean Eng. 244, 110385 (2022)

    Article  Google Scholar 

  13. Fu, D., Gao, W., Song, M., Zhang, L.: Nonlinear recurrent kernel normalized LMS algorithm for nonlinear autoregressive system. In: 2021 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), pp. 1–6. IEEE (2021)

    Google Scholar 

  14. Yukawa, M.: Nonlinear adaptive filtering techniques with multiple kernels. In: 2011 19th European Signal Processing Conference, pp. 136–140. IEEE (2011)

    Google Scholar 

  15. Yukawa, M.: Multikernel adaptive filtering. IEEE Trans. Signal Process. 60(9), 4672–4682 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  16. Tobar, F.A., Kung, S.Y., Mandic, D.P.: Multikernel least mean square algorithm. IEEE Trans. Neural Netw. Learn. Syst. 25(2), 265–277 (2013)

    Google Scholar 

  17. édric Richard, C., Bermudez, J.M.C., Honeine, P.: Online prediction of time series data with kernels. IEEE Trans. Signal Process. 57(3), 1058–1067 (2008)

    Google Scholar 

  18. Tüfekci, P.: Prediction of full load electrical power output of a base load operated combined cycle power plant using machine learning methods. Int. J. Electrical Power Energy Syst. 60, 126–140 (2014)

    Article  Google Scholar 

  19. Cortez, P., Cerdeira, A., Almeida, F., Matos, T., Reis, J.: Modeling wine preferences by data mining from physicochemical properties. Decis. Support Syst. 47(4), 547–553 (2009)

    Article  Google Scholar 

  20. Zhao, J., Zhang, H., Liao, X.: Variable learning rates kernel adaptive filter with single feedback. Digital Signal Process. 83, 59–72 (2018)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ji Zhao or Qiang Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhao, J., Liu, J., Li, Q., Tang, L., Zhang, H. (2024). Nonlinear Multiple-Delay Feedback Based Kernel Least Mean Square Algorithm. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Lecture Notes in Computer Science, vol 14447. Springer, Singapore. https://doi.org/10.1007/978-981-99-8079-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8079-6_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8078-9

  • Online ISBN: 978-981-99-8079-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics