Abstract
This paper addresses the optimization of desktop image presentation in remote desktop scenarios. Remote desktop tools, essential for work efficiency, often employ image compression to manage bandwidth. While JPEG is a prevalent choice due to its efficiency in eliminating redundancy, it can introduce artifacts as compression increases. Recently, deep learning-based compression techniques have emerged, rivaling traditional methods like JPEG. This research introduces a convolutional neural network-based model for image compression and reconstruction, emphasizing human visual perception. By integrating adaptive spatial and channel attention mechanisms, it ensures better preservation of text and texture. This method outperforms JPEG and other deep learning algorithms in image quality and compression ratio.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
BallƩ, J., Laparra, V., Simoncelli, E.P.: Density modeling of images using a generalized normalization transformation. arXiv preprint arXiv:1511.06281 (2015)
BallƩ, J., Laparra, V., Simoncelli, E.P.: End-to-end optimized image compression. arXiv preprint arXiv:1611.01704 (2016)
BallƩ, J., Minnen, D., Singh, S., Hwang, S.J., Johnston, N.: Variational image compression with a scale hyperprior. arXiv preprint arXiv:1802.01436 (2018)
Bi, Q., Qin, K., Zhang, H., Li, Z., Xu, K.: RADC-Net: a residual attention based convolution network for aerial scene classification. Neurocomputing 377, 345ā359 (2020)
Hore, A., Ziou, D.: Image quality metrics: PSNR vs SSIM. In: 2010 20th International Conference on Pattern Recognition, pp. 2366ā2369. IEEE (2010)
Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132ā7141 (2018)
Jiang, F., Tao, W., Liu, S., Ren, J., Guo, X., Zhao, D.: An end-to-end compression framework based on convolutional neural networks. IEEE Trans. Circuits Syst. Video Technol. 28(10), 3007ā3018 (2017)
Lee, J., Cho, S., Beack, S.K.: Context-adaptive entropy model for end-to-end optimized image compression. arXiv preprint arXiv:1809.10452 (2018)
Lin, T., Hao, P.: Compound image compression for real-time computer screen image transmission. IEEE Trans. Image Process. 14(8), 993ā1005 (2005)
Mentzer, F., Agustsson, E., Tschannen, M., Timofte, R., VanĀ Gool, L.: Conditional probability models for deep image compression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4394ā4402 (2018)
Mishra, D., Singh, S.K., Singh, R.K.: Deep architectures for image compression: a critical review. Signal Process. 191, 108346 (2022)
Mnih, V., Heess, N., Graves, A., etĀ al.: Recurrent models of visual attention. In: Advances in Neural Information Processing Systems 27 (2014)
Sazawa, S., Hashima, M., Sato, Y., Horio, K., Matsui, K.: RVEC: efficient remote desktop for the engineering cloud. In: 2012 26th International Conference on Advanced Information Networking and Applications Workshops, pp. 1081ā1088. IEEE (2012)
Shimada, D., Hashima, M., Sato, Y.: Image compression for remote desktop for engineering cloud. In: 2014 IEEE International Conference on Cloud Engineering, pp. 478ā483. IEEE (2014)
Toderici, G., et al.: Full resolution image compression with recurrent neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5306ā5314 (2017)
Wang, S., Lin, T.: United coding for compound image compression. In: 2010 3rd International Congress on Image and Signal Processing, vol.Ā 2, pp. 566ā570. IEEE (2010)
Wang, S., Lin, T.: United coding method for compound image compression. Multimedia Tools Appl. 71, 1263ā1282 (2014)
Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794ā7803 (2018)
Wang, Y., Chen, X., Wang, Q., Yang, R., Xin, B.: Unsupervised anomaly detection for container cloud via BILSTM-based variational auto-encoder. In: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3024ā3028. IEEE (2022)
Wang, Y., Wang, Q., Qin, X., Chen, X., Xin, B., Yang, R.: DockerWatch: a two-phase hybrid detection of malware using various static features in container cloud. Soft. Comput. 27(2), 1015ā1031 (2023)
Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600ā612 (2004)
Weinberger, M.J., Seroussi, G., Sapiro, G.: The LOCO-I lossless image compression algorithm: Principles and standardization into JPEG-LS. IEEE Trans. Image Process. 9(8), 1309ā1324 (2000)
Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3ā19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1
Zhao, L., Bai, H., Wang, A., Zhao, Y.: Learning a virtual codec based on deep convolutional neural network to compress image. J. Vis. Commun. Image Represent. 63, 102589 (2019)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Wang, H., Deng, K., Duan, Y., Yin, M., Wang, Y., Meng, F. (2024). Adaptive CNN-Based Image Compression Model forĀ Improved Remote Desktop Experience. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1962. Springer, Singapore. https://doi.org/10.1007/978-981-99-8132-8_4
Download citation
DOI: https://doi.org/10.1007/978-981-99-8132-8_4
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8131-1
Online ISBN: 978-981-99-8132-8
eBook Packages: Computer ScienceComputer Science (R0)