Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Adaptive CNN-Based Image Compression Model forĀ Improved Remote Desktop Experience

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1962))

Included in the following conference series:

Abstract

This paper addresses the optimization of desktop image presentation in remote desktop scenarios. Remote desktop tools, essential for work efficiency, often employ image compression to manage bandwidth. While JPEG is a prevalent choice due to its efficiency in eliminating redundancy, it can introduce artifacts as compression increases. Recently, deep learning-based compression techniques have emerged, rivaling traditional methods like JPEG. This research introduces a convolutional neural network-based model for image compression and reconstruction, emphasizing human visual perception. By integrating adaptive spatial and channel attention mechanisms, it ensures better preservation of text and texture. This method outperforms JPEG and other deep learning algorithms in image quality and compression ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.flickr.com/.

  2. 2.

    https://r0k.us/graphics/kodak/.

References

  1. BallƩ, J., Laparra, V., Simoncelli, E.P.: Density modeling of images using a generalized normalization transformation. arXiv preprint arXiv:1511.06281 (2015)

  2. BallƩ, J., Laparra, V., Simoncelli, E.P.: End-to-end optimized image compression. arXiv preprint arXiv:1611.01704 (2016)

  3. BallƩ, J., Minnen, D., Singh, S., Hwang, S.J., Johnston, N.: Variational image compression with a scale hyperprior. arXiv preprint arXiv:1802.01436 (2018)

  4. Bi, Q., Qin, K., Zhang, H., Li, Z., Xu, K.: RADC-Net: a residual attention based convolution network for aerial scene classification. Neurocomputing 377, 345ā€“359 (2020)

    ArticleĀ  Google ScholarĀ 

  5. Hore, A., Ziou, D.: Image quality metrics: PSNR vs SSIM. In: 2010 20th International Conference on Pattern Recognition, pp. 2366ā€“2369. IEEE (2010)

    Google ScholarĀ 

  6. Hu, J., Shen, L., Sun, G.: Squeeze-and-excitation networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7132ā€“7141 (2018)

    Google ScholarĀ 

  7. Jiang, F., Tao, W., Liu, S., Ren, J., Guo, X., Zhao, D.: An end-to-end compression framework based on convolutional neural networks. IEEE Trans. Circuits Syst. Video Technol. 28(10), 3007ā€“3018 (2017)

    ArticleĀ  Google ScholarĀ 

  8. Lee, J., Cho, S., Beack, S.K.: Context-adaptive entropy model for end-to-end optimized image compression. arXiv preprint arXiv:1809.10452 (2018)

  9. Lin, T., Hao, P.: Compound image compression for real-time computer screen image transmission. IEEE Trans. Image Process. 14(8), 993ā€“1005 (2005)

    ArticleĀ  MathSciNetĀ  Google ScholarĀ 

  10. Mentzer, F., Agustsson, E., Tschannen, M., Timofte, R., VanĀ Gool, L.: Conditional probability models for deep image compression. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4394ā€“4402 (2018)

    Google ScholarĀ 

  11. Mishra, D., Singh, S.K., Singh, R.K.: Deep architectures for image compression: a critical review. Signal Process. 191, 108346 (2022)

    ArticleĀ  Google ScholarĀ 

  12. Mnih, V., Heess, N., Graves, A., etĀ al.: Recurrent models of visual attention. In: Advances in Neural Information Processing Systems 27 (2014)

    Google ScholarĀ 

  13. Sazawa, S., Hashima, M., Sato, Y., Horio, K., Matsui, K.: RVEC: efficient remote desktop for the engineering cloud. In: 2012 26th International Conference on Advanced Information Networking and Applications Workshops, pp. 1081ā€“1088. IEEE (2012)

    Google ScholarĀ 

  14. Shimada, D., Hashima, M., Sato, Y.: Image compression for remote desktop for engineering cloud. In: 2014 IEEE International Conference on Cloud Engineering, pp. 478ā€“483. IEEE (2014)

    Google ScholarĀ 

  15. Toderici, G., et al.: Full resolution image compression with recurrent neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5306ā€“5314 (2017)

    Google ScholarĀ 

  16. Wang, S., Lin, T.: United coding for compound image compression. In: 2010 3rd International Congress on Image and Signal Processing, vol.Ā 2, pp. 566ā€“570. IEEE (2010)

    Google ScholarĀ 

  17. Wang, S., Lin, T.: United coding method for compound image compression. Multimedia Tools Appl. 71, 1263ā€“1282 (2014)

    ArticleĀ  Google ScholarĀ 

  18. Wang, X., Girshick, R., Gupta, A., He, K.: Non-local neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7794ā€“7803 (2018)

    Google ScholarĀ 

  19. Wang, Y., Chen, X., Wang, Q., Yang, R., Xin, B.: Unsupervised anomaly detection for container cloud via BILSTM-based variational auto-encoder. In: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3024ā€“3028. IEEE (2022)

    Google ScholarĀ 

  20. Wang, Y., Wang, Q., Qin, X., Chen, X., Xin, B., Yang, R.: DockerWatch: a two-phase hybrid detection of malware using various static features in container cloud. Soft. Comput. 27(2), 1015ā€“1031 (2023)

    ArticleĀ  Google ScholarĀ 

  21. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600ā€“612 (2004)

    ArticleĀ  Google ScholarĀ 

  22. Weinberger, M.J., Seroussi, G., Sapiro, G.: The LOCO-I lossless image compression algorithm: Principles and standardization into JPEG-LS. IEEE Trans. Image Process. 9(8), 1309ā€“1324 (2000)

    ArticleĀ  Google ScholarĀ 

  23. Woo, S., Park, J., Lee, J.-Y., Kweon, I.S.: CBAM: convolutional block attention module. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11211, pp. 3ā€“19. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01234-2_1

    ChapterĀ  Google ScholarĀ 

  24. Zhao, L., Bai, H., Wang, A., Zhao, Y.: Learning a virtual codec based on deep convolutional neural network to compress image. J. Vis. Commun. Image Represent. 63, 102589 (2019)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Deng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, H., Deng, K., Duan, Y., Yin, M., Wang, Y., Meng, F. (2024). Adaptive CNN-Based Image Compression Model forĀ Improved Remote Desktop Experience. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1962. Springer, Singapore. https://doi.org/10.1007/978-981-99-8132-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8132-8_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8131-1

  • Online ISBN: 978-981-99-8132-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics