Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Phishing Scam Detection for Ethereum Based on Community Enhanced Graph Convolutional Networks

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1965))

Included in the following conference series:

  • 851 Accesses

Abstract

Blockchain technology has garnered a lot of interest recently, but it has also become a breeding ground for various network crimes. Cryptocurrency, for example, has suffered losses due to network phishing scams, posing a serious threat to the security of blockchain ecosystem transactions. To create a favorable investment environment, we propose a community-enhanced phishing scam detection model in this paper. We approach network phishing detection as a graph classification task and introduce a network phishing detection graph neural network framework. Firstly, we construct an Ethereum transaction network and extract transaction subgraphs, and corresponding content features from it. Based on this, we propose a community-enhanced graph convolutional network (GCN)-based detection model. It extracts more reasonable node representations in the GCN neighborhoods and explores the advanced semantics of the graph by defining community structure and measuring the similarity of nodes in the community. This distinguishes normal accounts from phishing accounts. Experiments on different large-scale real-data sets of Ethereum consistently demonstrate that our proposed model performs better than related methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://blog.chainalysis.com/the-rise-of-cybercrime-on-ethereum/.

  2. 2.

    https://theripplecryptocurrency.com/bee-token-scam/.

  3. 3.

    https://etherscan.io/charts.

  4. 4.

    https://etherscamdb.info/scams.

  5. 5.

    https://etherscan.io/.

References

  1. Abu-El-Haija, S., Kapoor, A., Perozzi, B., Lee, J.: N-GCN: multi-scale graph convolution for semi-supervised node classification. In: Uncertainty in Artificial Intelligence, pp. 841–851. PMLR (2020)

    Google Scholar 

  2. Bellingeri, M., Bevacqua, D., Scotognella, F., Cassi, D.: The heterogeneity in link weights may decrease the robustness of real-world complex weighted networks. Sci. Rep. 9(1), 10692 (2019)

    Article  Google Scholar 

  3. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: structure and dynamics. Phys. Rep. 424(4–5), 175–308 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  4. Breiman, L.: Random forests. Mach. Learn. 45, 5–32 (2001)

    Article  MATH  Google Scholar 

  5. Cao, S., Lu, W., Xu, Q.: GraRep: learning graph representations with global structural information. In: Proceedings of the 24th ACM International on Conference on Information And Knowledge Management, pp. 891–900 (2015)

    Google Scholar 

  6. Chang, C.C., Lin, C.J.: LIBSVM: a library for support vector machines. ACM Trans. Intell. Syst. Technol. (TIST) 2(3), 1–27 (2011)

    Article  Google Scholar 

  7. Chen, J., Zhang, J., Chen, Z., Du, M., Xuan, Q.: Time-aware gradient attack on dynamic network link prediction. IEEE Transactions on Knowledge and Data Engineering (2021)

    Google Scholar 

  8. Chen, L., Peng, J., Liu, Y., Li, J., Xie, F., Zheng, Z.: Phishing scams detection in Ethereum transaction network. ACM Trans. Internet Technol. (TOIT) 21(1), 1–16 (2020)

    Article  Google Scholar 

  9. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)

    Google Scholar 

  10. Chen, W., Zhang, T., Chen, Z., Zheng, Z., Lu, Y.: Traveling the token world: a graph analysis of Ethereum ERC20 token ecosystem. In: Proceedings of The Web Conference 2020, pp. 1411–1421 (2020)

    Google Scholar 

  11. Defferrard, M., Bresson, X., Vandergheynst, P.: Convolutional neural networks on graphs with fast localized spectral filtering. In: Advances in Neural Information Processing Systems, vol. 29 (2016)

    Google Scholar 

  12. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 855–864 (2016)

    Google Scholar 

  13. Holub, A., O’Connor, J.: Coinhoarder: Tracking a Ukrainian bitcoin phishing ring DNS style. In: 2018 APWG Symposium on Electronic Crime Research (eCrime), pp. 1–5. IEEE (2018)

    Google Scholar 

  14. Ke, G., et al.: LightGBM: a highly efficient gradient boosting decision tree. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  15. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  16. Li, S., Xu, F., Wang, R., Zhong, S.: Self-supervised incremental deep graph learning for Ethereum phishing scam detection. arXiv preprint arXiv:2106.10176 (2021)

  17. Liu, J.: E-commerce Agents: Marketplace Solutions, Security Issues, and Supply And Demand, vol. 2033, 1st edn. Springer Science & Business Media, Heidelberg (2001). https://doi.org/10.1007/3-540-45370-9

    Book  MATH  Google Scholar 

  18. Liu, Y., Wang, Q., Wang, X., Zhang, F., Geng, L., Wu, J., Xiao, Z.: Community enhanced graph convolutional networks. Pattern Recogn. Lett. 138, 462–468 (2020)

    Article  Google Scholar 

  19. Liu, Z., Chen, C., Yang, X., Zhou, J., Li, X., Song, L.: Heterogeneous graph neural networks for malicious account detection. In: Proceedings of the 27th ACM International Conference on Information and Knowledge Management, pp. 2077–2085 (2018)

    Google Scholar 

  20. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781 (2013)

  21. Narayanan, A., Chandramohan, M., Venkatesan, R., Chen, L., Liu, Y., Jaiswal, S.: graph2vec: Learning distributed representations of graphs. arXiv preprint arXiv:1707.05005 (2017)

  22. Newman, M.E.: Modularity and community structure in networks. Proc. Natl. Acad. Sci. 103(23), 8577–8582 (2006)

    Article  Google Scholar 

  23. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: online learning of social representations. In: Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 701–710 (2014)

    Google Scholar 

  24. Pilkington, M.: Blockchain technology: principles and applications. In: Research Handbook on Digital Transformations, pp. 225–253. Edward Elgar Publishing (2016)

    Google Scholar 

  25. Qiu, J., Tang, J., Ma, H., Dong, Y., Wang, K., Tang, J.: DeepInf: social influence prediction with deep learning. In: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, pp. 2110–2119 (2018)

    Google Scholar 

  26. Rish, I., et al.: An empirical study of the Naive Bayes classifier. In: IJCAI 2001 Workshop on Empirical Methods in Artificial Intelligence, vol. 3, pp. 41–46 (2001)

    Google Scholar 

  27. Tang, J., Qu, M., Wang, M., Zhang, M., Yan, J., Mei, Q.: Line: large-scale information network embedding. In: Proceedings of the 24th International Conference on World Wide Web, pp. 1067–1077 (2015)

    Google Scholar 

  28. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1225–1234 (2016)

    Google Scholar 

  29. Wang, J., Chen, P., Yu, S., Xuan, Q.: TSGN: transaction subgraph networks for identifying Ethereum phishing accounts. In: Dai, H.-N., Liu, X., Luo, D.X., Xiao, J., Chen, X. (eds.) BlockSys 2021. CCIS, vol. 1490, pp. 187–200. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-7993-3_15

    Chapter  Google Scholar 

  30. Wang, S., Ouyang, L., Yuan, Y., Ni, X., Han, X., Wang, F.Y.: Blockchain-enabled smart contracts: architecture, applications, and future trends. IEEE Trans. Syst. Man Cybern. Syst. 49(11), 2266–2277 (2019)

    Article  Google Scholar 

  31. Watts, D.J., Strogatz, S.H.: Collective dynamics of ‘small-world’ networks. Nature 393(6684), 440–442 (1998)

    Article  MATH  Google Scholar 

  32. Wu, J., et al.: Who are the phishers? Phishing scam detection on Ethereum via network embedding. IEEE Trans. Syst. Man Cybern. Syst. 52(2), 1156–1166 (2020)

    Article  MathSciNet  Google Scholar 

  33. Xuan, Q., et al.: Subgraph networks with application to structural feature space expansion. IEEE Trans. Knowl. Data Eng. 33(6), 2776–2789 (2019)

    Article  Google Scholar 

  34. Zhang, D., Yin, J., Zhu, X., Zhang, C.: Network representation learning: a survey. IEEE Trans. Big Data 6(1), 3–28 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the National Key R &D Program of China No. 2022YFB2702504. It is also supported by the Fundamental Research Funds for the Central Universities (226-2022-00064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Keting Yin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yin, K., Ye, B. (2024). Phishing Scam Detection for Ethereum Based on Community Enhanced Graph Convolutional Networks. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1965. Springer, Singapore. https://doi.org/10.1007/978-981-99-8145-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8145-8_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8144-1

  • Online ISBN: 978-981-99-8145-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics