Abstract
3D point clouds are rich in geometric structure information, while 2D images contain important and continuous texture information. Combining 2D information to achieve better 3D semantic segmentation has become a mainstream in 3D scene understanding. Albeit the success, it still remains elusive how to fuse and process the cross-dimensional features from these two distinct spaces. Existing state-of-the-art usually exploit bidirectional projection methods to align the cross-dimensional features and realize both 2D & 3D semantic segmentation tasks. However, to enable bidirectional mapping, this framework often requires a symmetrical 2D-3D network structure, thus limiting the network’s flexibility. Meanwhile, such dual-task settings may distract the network easily and lead to over-fitting in the 3D segmentation task. As limited by the network’s inflexibility, fused features can only pass through a decoder network, which affects model performance due to insufficient depth. To alleviate these drawbacks, in this paper, we argue that despite its simplicity, projecting unidirectionally multi-view 2D deep semantic features into the 3D space aligned with 3D deep semantic features could lead to better feature fusion. On the one hand, the unidirectional projection enforces our model focused more on the core task, i.e., 3D segmentation; on the other hand, unlocking the bidirectional to unidirectional projection enables a deeper cross-domain semantic alignment and enjoys the flexibility to fuse better and complicated features from very different spaces. In joint 2D-3D approaches, our proposed method achieves superior performance on the ScanNetv2 benchmark for 3D semantic segmentation.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Boulch, A., Le Saux, B., Audebert, N.: Unstructured point cloud semantic labeling using deep segmentation networks. In: 3DOR (2017)
Cao, H., et al.: Swin-Unet: Unet-like pure transformer for medical image segmentation. arXiv preprint arXiv:2105.05537 (2021)
Chiang, H.Y., Lin, Y.L., Liu, Y.C., Hsu, W.H.: A unified point-based framework for 3D segmentation. In: 3DV, pp. 155–163 (2019)
Choy, C., Gwak, J., Savarese, S.: 4D spatio-temporal ConvNets: minkowski convolutional neural networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3075–3084 (2019)
Dai, A., Chang, A.X., Savva, M., Halber, M., Funkhouser, T., Nießner, M.: ScanNet: richly-annotated 3D reconstructions of indoor scenes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5828–5839 (2017)
Dai, A., Nießner, M.: 3DMV: joint 3D-multi-view prediction for 3D semantic scene segmentation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 458–474. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_28
Graham, B., Engelcke, M., Van Der Maaten, L.: 3D semantic segmentation with submanifold sparse convolutional networks. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9224–9232 (2018)
Handa, A., Patraucean, V., Badrinarayanan, V., Stent, S., Cipolla, R.: SceneNet: Understanding real world indoor scenes with synthetic data. arXiv preprint arXiv:1511.07041 (2015)
Hermans, A., Floros, G., Leibe, B.: Dense 3D semantic mapping of indoor scenes from RGB-D images. In: 2014 IEEE International Conference on Robotics and Automation (ICRA), pp. 2631–2638 (2014)
Hermosilla, P., Ritschel, T., Vázquez, P.P., Vinacua, À., Ropinski, T.: Monte Carlo convolution for learning on non-uniformly sampled point clouds. ACM Trans. Graph. (TOG) 37(6), 1–12 (2018)
Hu, W., Zhao, H., Jiang, L., Jia, J., Wong, T.T.: Bidirectional projection network for cross dimension scene understanding. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 14373–14382 (2021)
Huang, K., Hussain, A., Wang, Q., Zhang, R.: Deep learning: fundamentals, theory and applications, vol. 2. Springer (2019). https://doi.org/10.1007/978-3-030-06073-2
Jaritz, M., Gu, J., Su, H.: Multi-view pointNet for 3D scene understanding. In: 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW) (2019)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR) (2015)
Kundu, A., et al.: Virtual multi-view fusion for 3D semantic segmentation. In: ECCV, pp. 518–535 (2020)
Lawin, F.J., Danelljan, M., Tosteberg, P., Bhat, G., Khan, F.S., Felsberg, M.: Deep projective 3D semantic segmentation. In: Felsberg, M., Heyden, A., Krüger, N. (eds.) CAIP 2017. LNCS, vol. 10424, pp. 95–107. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64689-3_8
Lin, Y., et al.: FPConv: learning local flattening for point convolution. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4293–4302 (2020)
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3431–3440 (2015)
Loshchilov, I., Hutter, F.: SGDR: stochastic gradient descent with warm restarts. In: International Conference on Learning Representations (ICLR) (2017)
McCormac, J., Handa, A., Davison, A., Leutenegger, S.: SemanticFusion: dense 3D semantic mapping with convolutional neural networks. In: 2017 IEEE International Conference on Robotics and Automation (ICRA), pp. 4628–4635 (2017)
Qi, C.R., Su, H., Mo, K., Guibas, L.J.: PointNet: deep learning on point sets for 3D classification and segmentation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 652–660 (2017)
Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet++ deep hierarchical feature learning on point sets in a metric space. In: NeurIPS, pp. 5105–5114 (2017)
Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28
Schult, J., Engelmann, F., Kontogianni, T., Leibe, B.: DualConvMesh-Net: joint geodesic and Euclidean convolutions on 3D meshes. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8612–8622 (2020)
Silberman, N., Hoiem, D., Kohli, P., Fergus, R.: Indoor segmentation and support inference from RGBD images. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7576, pp. 746–760. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33715-4_54
Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5693–5703 (2019)
Tatarchenko, M., Park, J., Koltun, V., Zhou, Q.Y.: Tangent convolutions for dense prediction in 3D. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 3887–3896 (2018)
Thomas, H., Qi, C.R., Deschaud, J.E., Marcotegui, B., Goulette, F., Guibas, L.J.: KPConv: flexible and deformable convolution for point clouds. In: International Conference on Computer Vision (ICCV), pp. 6411–6420 (2019)
Wu, W., Qi, Z., Fuxin, L.: PointConv: deep convolutional networks on 3D point clouds. In: IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 9621–9630 (2019)
Xiao, X., Lian, S., Luo, Z., Li, S.: Weighted res-UNet for high-quality retina vessel segmentation. In: International Conference on Information Technology in Medicine and Education (ITME), pp. 327–331 (2018)
Zhang, J., Zhu, C., Zheng, L., Xu, K.: Fusion-aware point convolution for online semantic 3D scene segmentation. In: conference on Computer Vision and Pattern Recognition (CVPR), pp. 4534–4543 (2020)
Zhang, Z.: A flexible new technique for camera calibration. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI) 22(11), 1330–1334 (2000)
Zhao, W., Yan, Y., Yang, C., Ye, J., Yang, X., Huang, K.: Divide and conquer: 3D point cloud instance segmentation with point-wise binarization. In: International Conference on Computer Vision (ICCV) (2023)
Acknowledgement
The work was partially supported by the following: National Natural Science Foundation of China under no. 62376113; Jiangsu Science and Technology Programme (Natural Science Foundation of Jiangsu Province) under no. BE2020006-4, UK Engineering and Physical Sciences Research Council (EPSRC) Grants Ref. EP/M026981/1, EP/T021063/1, EP/T024917/.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.
About this paper
Cite this paper
Yang, C. et al. (2024). Towards Deeper and Better Multi-view Feature Fusion for 3D Semantic Segmentation. In: Luo, B., Cheng, L., Wu, ZG., Li, H., Li, C. (eds) Neural Information Processing. ICONIP 2023. Communications in Computer and Information Science, vol 1969. Springer, Singapore. https://doi.org/10.1007/978-981-99-8184-7_1
Download citation
DOI: https://doi.org/10.1007/978-981-99-8184-7_1
Published:
Publisher Name: Springer, Singapore
Print ISBN: 978-981-99-8183-0
Online ISBN: 978-981-99-8184-7
eBook Packages: Computer ScienceComputer Science (R0)