Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

A Video Face Recognition Leveraging Temporal Information Based on Vision Transformer

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14429))

Included in the following conference series:

  • 686 Accesses

Abstract

Video face recognition (VFR) has gained significant attention as a promising field combining computer vision and artificial intelligence, revolutionizing identity authentication and verification. Unlike traditional image-based methods, VFR leverages the temporal dimension of video footage to extract comprehensive and accurate facial information. However, VFR heavily relies on robust computing power and advanced noise processing capabilities to ensure optimal recognition performance. This paper introduces a novel length-adaptive VFR framework based on a recurrent-mechanism-driven Vision Transformer, termed TempoViT. TempoViT efficiently captures spatial and temporal information from face videos, enabling accurate and reliable face recognition while mitigating the high GPU memory requirements associated with video processing. By leveraging the reuse of hidden states from previous frames, the framework establishes recurring links between frames, allowing the modeling of long-term dependencies. Experimental results validate the effectiveness of TempoViT, demonstrating its state-of-the-art performance in video face recognition tasks on benchmark datasets including iQIYI-ViD, YTF, IJB-C, and Honda/UCSD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Arnab, A., Dehghani, M., Heigold, G., Sun, C., Lučić, M., Schmid, C.: Vivit: a video vision transformer. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (2021)

    Google Scholar 

  2. Ballas, N., Yao, L., Pal, C., Courville, A.: Delving deeper into convolutional networks for learning video representations. In: 4th International Conference on Learning Representations, ICLR 2016 (2015)

    Google Scholar 

  3. Bertasius, G., Wang, H., Torresani, L.: Is space-time attention all you need for video understanding? In: Proceedings of the International Conference on Machine Learning (ICML), vol. 2, p. 4 (2021)

    Google Scholar 

  4. Deng, J., Guo, J., Xue, N., Zafeiriou, S.: Arcface: additive angular margin loss for deep face recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 4690–4699 (2019)

    Google Scholar 

  5. Ding, C., Tao, D.: Trunk-branch ensemble convolutional neural networks for video-based face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 1002–1014 (2017)

    Article  Google Scholar 

  6. Dosovitskiy, A., et al.: An image is worth 16x16 words: transformers for image recognition at scale. In: ICLR (2021)

    Google Scholar 

  7. Du, H., Shi, H., Zeng, D., Zhang, X.P., Mei, T.: The elements of end-to-end deep face recognition: a survey of recent advances. ACM Comput. Surv. (CSUR) 54(10s), 1–42 (2022)

    Article  Google Scholar 

  8. Fan, H., et al.: Multiscale vision transformers. In: Proceedings of the IEEE International Conference on Computer Vision (2021)

    Google Scholar 

  9. Gong, S., Shi, Y., Kalka, N.D., Jain, A.K.: Video face recognition: component-wise feature aggregation network (C-FAN). In: 2019 International Conference on Biometrics (ICB), pp. 1–8. IEEE (2019)

    Google Scholar 

  10. Guo, G., Zhang, N.: A survey on deep learning based face recognition. Comput. Vis. Image Underst. 189, 102805 (2019)

    Article  Google Scholar 

  11. Hajati, F., Tavakolian, M., Gheisari, S., Gao, Y., Mian, A.S.: Dynamic texture comparison using derivative sparse representation: application to video-based face recognition. IEEE Trans. Hum.-Mach. Syst. 47(6), 970–982 (2017)

    Article  Google Scholar 

  12. Hara, K., Kataoka, H., Satoh, Y.: Can spatiotemporal 3D CNNs retrace the history of 2D CNNs and imagenet? In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6546–6555 (2018)

    Google Scholar 

  13. Hörmann, S., Cao, Z., Knoche, M., Herzog, F., Rigoll, G.: Face aggregation network for video face recognition. In: 2021 IEEE International Conference on Image Processing (ICIP), pp. 2973–2977. IEEE (2021)

    Google Scholar 

  14. Howard, A.G., et al.: Mobilenets: efficient convolutional neural networks for mobile vision applications. CoRR abs/1704.04861 (2017)

    Google Scholar 

  15. Hu, W., Huang, Y., Zhang, F., Li, R., Li, W., Yuan, G.: Seqface: make full use of sequence information for face recognition. arXiv preprint arXiv:1803.06524 (2018)

  16. Kim, S.T., Kim, D.H., Ro, Y.M.: Spatio-temporal representation for face authentication by using multi-task learning with human attributes. In: 2016 IEEE International Conference on Image Processing (ICIP), pp. 2996–3000. IEEE (2016)

    Google Scholar 

  17. Kim, S.T., Ro, Y.M.: Facial dynamics interpreter network: what are the important relations between local dynamics for facial trait estimation? In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 464–480 (2018)

    Google Scholar 

  18. Lee, K., Ho, J., Yang, M., Kriegman, D.: Visual tracking and recognition using probabilistic appearance manifolds. Comput. Vis. Image Underst. 99(3), 303–331 (2005)

    Article  Google Scholar 

  19. Li, Y., Zheng, W., Cui, Z., Zhang, T.: Face recognition based on recurrent regression neural network. Neurocomputing 297, 50–58 (2018)

    Article  Google Scholar 

  20. Lin, J., Xiao, L., Wu, T., Bian, W.: Image set-based face recognition using pose estimation with facial landmarks. Multimedia Tools Appl. 79(27), 19493–19507 (2020)

    Article  Google Scholar 

  21. Liu, Y., et al.: iQIYI-VID: a large dataset for multi-modal person identification. arXiv preprint arXiv:1811.07548 (2018)

  22. Maze, B., et al.: IARPA Janus benchmark-C: face dataset and protocol. In: 2018 International Conference on Biometrics (ICB), pp. 158–165. IEEE (2018)

    Google Scholar 

  23. Mokhayeri, F., Granger, E.: A paired sparse representation model for robust face recognition from a single sample. Pattern Recogn. 100, 107129 (2020)

    Article  Google Scholar 

  24. Neimark, D., Bar, O., Zohar, M., Asselmann, D.: Video transformer network. arXiv preprint arXiv:2102.00719 (2021)

  25. Rao, Y., Lu, J., Zhou, J.: Attention-aware deep reinforcement learning for video face recognition. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 3931–3940 (2017)

    Google Scholar 

  26. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, vol. 30 (2017)

    Google Scholar 

  27. Wang, H., et al.: CosFace: large margin cosine loss for deep face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 5265–5274 (2018)

    Google Scholar 

  28. Wolf, L., Hassner, T., Maoz, I.: Face recognition in unconstrained videos with matched background similarity. In: CVPR 2011, pp. 529–534. IEEE (2011)

    Google Scholar 

  29. Xingjian, S., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.C.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810 (2015)

    Google Scholar 

  30. Yang, J., et al.: Neural aggregation network for video face recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4362–4371 (2017)

    Google Scholar 

  31. Yang, J., Dong, X., Liu, L., Zhang, C., Shen, J., Yu, D.: Recurring the transformer for video action recognition. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 14063–14073 (2022)

    Google Scholar 

  32. Zhang, M., Song, G., Zhou, H., Liu, Yu.: Discriminability distillation in group representation learning. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12355, pp. 1–19. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58607-2_1

    Chapter  Google Scholar 

  33. Zhong, Y., Deng, W.: Face transformer for recognition. arXiv preprint arXiv:2103.14803 (2021)

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 62376003, 62306003, 62372004, 62302005).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jiewen Yang or Xingbo Dong .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, H. et al. (2024). A Video Face Recognition Leveraging Temporal Information Based on Vision Transformer. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14429. Springer, Singapore. https://doi.org/10.1007/978-981-99-8469-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8469-5_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8468-8

  • Online ISBN: 978-981-99-8469-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics