Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Pairwise Negative Sample Mining for Human-Object Interaction Detection

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Abstract

In recent years, Human-Object Interaction (HOI) detection has been riding the wave of the development of object detectors. Typically, one-stage methods exploit them by instantiating HOI and detecting them in a coarse end-to-end learning scheme. With the invention detection transformer (DETR), more studies followed and addressed HOI detection in this novel set-prediction manner and achieved decent performance. However, the scarcity of positive samples in the dataset, especially among object-dense images, hinders learning and leads to lower detection quality. To alleviate this issue, we propose a sample mining technique that utilizes non-interactive human-object pairs to generate negative samples containing HOI features, enriching the sample sets to help the learning of queries. We also introduce interactivity priors, namely filtering out insignificant background objects to inhibit their disturbance. Our technique can be seamlessly integrated into an end-to-end training scheme. Additionally, we propose an unorthodox two-stage transformer-based method that separates pairwise detection and interaction inference to be handled by two cascade decoders, further exploiting this technique. Experimental results on mainstream datasets demonstrate that our approach achieves new state-of-the-art performance, surpassing both one-stage and traditional two-stage methods. Our study reveals the potential to convert between the two method types by adjusting data utilization.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Carion, N., Massa, F., Synnaeve, G., Usunier, N., Kirillov, A., Zagoruyko, S.: End-to-end object detection with transformers. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12346, pp. 213–229. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58452-8_13

    Chapter  Google Scholar 

  2. Chao, Y.W., Liu, Y., Liu, X., Zeng, H., Deng, J.: Learning to detect human-object interactions. In: IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 381–389 (2018)

    Google Scholar 

  3. Gao, C., Xu, J., Zou, Y., Huang, J.-B.: DRG: dual relation graph for human-object interaction detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12357, pp. 696–712. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58610-2_41

    Chapter  Google Scholar 

  4. Gkioxari, G., Girshick, R., Dollár, P., He, K.: Detecting and recognizing human-object interactions. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8359–8367 (2018)

    Google Scholar 

  5. Gupta, S., Malik, J.: Visual semantic role labeling. arXiv preprint arXiv:1505.04474 (2015)

  6. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  7. Kim, B., Choi, T., Kang, J., Kim, H.J.: UnionDet: union-level detector towards real-time human-object interaction detection. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12360, pp. 498–514. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58555-6_30

    Chapter  Google Scholar 

  8. Kim, B., Lee, J., Kang, J., Kim, E.S., Kim, H.J.: HOTR: end-to-end human-object interaction detection with transformers. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 74–83 (2021)

    Google Scholar 

  9. Kuhn, H.W.: The Hungarian method for the assignment problem. Nav. Res. Logistics Quart. 2(1–2), 83–97 (1955)

    Article  MathSciNet  Google Scholar 

  10. Lin, T.Y., Goyal, P., Girshick, R., He, K., Dollár, P.: Focal loss for dense object detection. In: Proceedings of IEEE/CVF International Conference on Computer Vision, (ICCV), pp. 2980–2988 (2017)

    Google Scholar 

  11. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  12. Qi, S., Wang, W., Jia, B., Shen, J., Zhu, S.C.: Learning human-object interactions by graph parsing neural networks. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 401–417 (2018)

    Google Scholar 

  13. Radford, A., et al.: Learning transferable visual models from natural language supervision. In: International Conference on Machine Learning (ICML), pp. 8748–8763 (2021)

    Google Scholar 

  14. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of IEEE/CVF Conference on Computer Vision and Pattern Recognition, (CVPR), pp. 779–788 (2016)

    Google Scholar 

  15. Rezatofighi, H., Tsoi, N., Gwak, J., Sadeghian, A., Reid, I., Savarese, S.: Generalized intersection over union: a metric and a loss for bounding box regression. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 658–666 (2019)

    Google Scholar 

  16. Tamura, M., Ohashi, H., Yoshinaga, T.: QPIC: query-based pairwise human-object interaction detection with image-wide contextual information. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 10410–10419 (2021)

    Google Scholar 

  17. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems (NeurIPS), vol. 30 (2017)

    Google Scholar 

  18. Wan, B., Zhou, D., Liu, Y., Li, R., He, X.: Pose-aware multi-level feature network for human object interaction detection. In: Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), pp. 9469–9478 (2019)

    Google Scholar 

  19. Wang, T., Yang, T., Danelljan, M., Khan, F.S., Zhang, X., Sun, J.: Learning human-object interaction detection using interaction points. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 4116–4125 (2020)

    Google Scholar 

  20. Zou, C., et al.: End-to-end human object interaction detection with hoi transformer. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 11825–11834 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiwei Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jia, W., Ma, S. (2024). Pairwise Negative Sample Mining for Human-Object Interaction Detection. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14431. Springer, Singapore. https://doi.org/10.1007/978-981-99-8540-1_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8540-1_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8539-5

  • Online ISBN: 978-981-99-8540-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics