Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

An Evolutionary Multiobjective Optimization Algorithm Based onĀ Manifold Learning

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14431))

Included in the following conference series:

  • 667 Accesses

Abstract

Multi-objective optimization problem is widespread in the real world. However, plenty of typical evolutionary multi-objective optimization (EMO) algorithms are extremely tough to deal with large-scale optimization problems (LSMOPs) due to the curse of dimensionality. In reality, the dimension of the manifold representing the Pareto solution set is much lower than that of the decision space. This work proposes a decision space reduction technique based on manifold learning using locality-preserving projects. The critical insight is to improve search efficiency through decision space reduction. The high-dimensional decision space is first mapped to a low-dimensional subspace for a more effective search. Subsequently, a transformation matrix which is Pseudo-inverse of the projection matrix, maps the resultant offspring solutions back to the primal decision space. The proposed decision space reduction technique can be integrated with most multi-objective evolutionary algorithms. This paper integrates it with NSGA-II, namely LPP-NSGA-II. We compare the proposed LPP-NSGA-II with four state-of-the-art EMO algorithms on thirteen test problems. The experimental results reveal the effectiveness of the proposed algorithm.

This research was funded by the Natural Science Foundation of Guangdong Province (2021A1515011839).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cheng, R., Jin, Y.: A competitive swarm optimizer for large scale optimization. IEEE Trans. Cybern. 45(2), 191ā€“204 (2014)

    ArticleĀ  Google ScholarĀ 

  2. Deb, K., Jain, H.: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, part i: solving problems with box constraints. IEEE Trans. Evol. Comput. 18(4), 577ā€“601 (2014)

    ArticleĀ  Google ScholarĀ 

  3. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol. Comput. 6(2), 182ā€“197 (2002)

    ArticleĀ  Google ScholarĀ 

  4. Gu, F., Liu, H.L., Cheung, Y.M., Zheng, M.: A rough-to-fine evolutionary multiobjective optimization algorithm. IEEE Trans. Cybern. 52(12), 13472ā€“13485 (2021)

    ArticleĀ  Google ScholarĀ 

  5. He, X., Niyogi, P.: Locality preserving projections. In: Advances in Neural Information Processing Systems, vol. 16, pp. 153ā€“160 (2003)

    Google ScholarĀ 

  6. Huang, D.S., Mi, J.X.: A new constrained independent component analysis method. IEEE Trans. Neural Networks 18(5), 1532ā€“1535 (2007)

    ArticleĀ  Google ScholarĀ 

  7. Huband, S., Hingston, P., Barone, L., While, L.: A review of multiobjective test problems and a scalable test problem toolkit. IEEE Trans. Evol. Comput. 10(5), 477ā€“506 (2006)

    ArticleĀ  Google ScholarĀ 

  8. Li, B., Tang, K., Li, J., Yao, X.: Stochastic ranking algorithm for many-objective optimization based on multiple indicators. IEEE Trans. Evol. Comput. 20(6), 924ā€“938 (2016)

    ArticleĀ  Google ScholarĀ 

  9. Li, B., Li, Y.R., Zhang, X.L.: A survey on laplacian eigenmaps based manifold learning methods. Neurocomputing 335, 336ā€“351 (2019)

    ArticleĀ  Google ScholarĀ 

  10. Li, X., Yao, X.: Cooperatively coevolving particle swarms for large scale optimization. IEEE Trans. Evol. Comput. 16(2), 210ā€“224 (2011)

    MathSciNetĀ  Google ScholarĀ 

  11. Liu, H.L., Gu, F., Zhang, Q.: Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems. IEEE Trans. Evol. Comput. 18(3), 450ā€“455 (2013)

    ArticleĀ  Google ScholarĀ 

  12. Ma, X., et al.: A survey on cooperative co-evolutionary algorithms. IEEE Trans. Evol. Comput. 23(3), 421ā€“441 (2019)

    ArticleĀ  Google ScholarĀ 

  13. Mohamed, A.W., Almazyad, A.S.: Differential evolution with novel mutation and adaptive crossover strategies for solving large scale global optimization problems. Appl. Comput. Intell. Soft Comput. 2017 (2017)

    Google ScholarĀ 

  14. Omidvar, M.N., Li, X., Mei, Y., Yao, X.: Cooperative co-evolution with differential grouping for large scale optimization. IEEE Trans. Evol. Comput. 18(3), 378ā€“393 (2013)

    ArticleĀ  Google ScholarĀ 

  15. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear embedding. Science 290(5500), 2323ā€“2326 (2000)

    Google ScholarĀ 

  16. Tenenbaum, J.B., Silva, V.D., Langford, J.C.: A global geometric framework for nonlinear dimensionality reduction. Science 290(5500), 2319ā€“2323 (2000)

    Google ScholarĀ 

  17. Tian, Y., Cheng, R., Zhang, X., Jin, Y.: Platemo: a matlab platform for evolutionary multi-objective optimization [educational forum]. IEEE Comput. Intell. Mag. 12(4), 73ā€“87 (2017)

    ArticleĀ  Google ScholarĀ 

  18. Tian, Y., Lu, C., Zhang, X., Tan, K.C., Jin, Y.: Solving large-scale multiobjective optimization problems with sparse optimal solutions via unsupervised neural networks. IEEE Trans. Cybern. 51(6), 3115ā€“3128 (2020)

    ArticleĀ  Google ScholarĀ 

  19. Trivedi, A., Srinivasan, D., Sanyal, K., Ghosh, A.: A survey of multiobjective evolutionary algorithms based on decomposition. IEEE Trans. Evol. Comput. 21(3), 440ā€“462 (2016)

    Google ScholarĀ 

  20. Wang, H., Jiao, L., Yao, X.: Two_arch2: an improved two-archive algorithm for many-objective optimization. IEEE Trans. Evol. Comput. 19(4), 524ā€“541 (2014)

    ArticleĀ  Google ScholarĀ 

  21. Xanthopoulos, P., Pardalos, P.M., Trafalis, T.B., Xanthopoulos, P., Pardalos, P.M., Trafalis, T.B.: Linear discriminant analysis. In: Robust Data Mining, pp. 27ā€“33 (2013)

    Google ScholarĀ 

  22. Yekkehkhany, B., Safari, A., Homayouni, S., Hasanlou, M.: A comparison study of different kernel functions for SVM-based classification of multi-temporal polarimetry SAR data. Int. Arch. Photogram. Remote Sens. Spatial Inf. Sci. 40(2), 281 (2014)

    ArticleĀ  Google ScholarĀ 

  23. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712ā€“731 (2007)

    ArticleĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fangqing Gu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, J., Gu, F., Shang, C. (2024). An Evolutionary Multiobjective Optimization Algorithm Based onĀ Manifold Learning. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14431. Springer, Singapore. https://doi.org/10.1007/978-981-99-8540-1_35

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8540-1_35

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8539-5

  • Online ISBN: 978-981-99-8540-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics