Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Adaptive and Compact Graph Convolutional Network for Micro-expression Recognition

  • Conference paper
  • First Online:
Pattern Recognition and Computer Vision (PRCV 2023)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 14433))

Included in the following conference series:

  • 729 Accesses

Abstract

Micro-expression recognition (MER) is a very challenging task since the motion of Micro-expressions (MEs) is subtle, transient and often occurs in tiny regions of face. To build discriminative representation from tiny regions, this paper proposes a novel two stream network, namely Adaptive and Compact Graph Convolutional Network (ACGCN). To be specific, we propose a novel Cheek Included Facial Graph to build more effective structural graph. Then, we propose the Tightly Connected Strategy to adaptively select structural graph to build compact and discriminative facial graph and adjacency matrix. We design the Small Region module to enlarge the interested feature in tiny regions and extract effective feature to build strong and effective node representations. We also adopt the spatial attention to make the network focus on the visual feature of salient regions. Experiments conducted on two micro-expressions datasets (CASME II, SAMM) show our approach outperforms the previous works.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chattopadhay, A., Sarkar, A., Howlader, P., Balasubramanian, V.N.: Grad-cam++: generalized gradient-based visual explanations for deep convolutional networks. In: 2018 IEEE Winter Conference on Applications of Computer Vision (WACV), pp. 839–847. IEEE (2018)

    Google Scholar 

  2. Davison, A.K., Lansley, C., Costen, N., Tan, K., Yap, M.H.: SAMM: a spontaneous micro-facial movement dataset. IEEE Trans. Affect. Comput. 9(1), 116–129 (2016)

    Article  Google Scholar 

  3. Ekman, P.: Lie catching and microexpressions. Phil. Decept. 1(2), 5 (2009)

    Google Scholar 

  4. Ekman, P., Friesen, W.V.: Facial action coding system. Environ. Psychol. Nonverbal Behav. (1978)

    Google Scholar 

  5. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  6. Kazemi, V., Sullivan, J.: One millisecond face alignment with an ensemble of regression trees. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1867–1874 (2014)

    Google Scholar 

  7. Khor, H.Q., See, J., Liong, S.T., Phan, R.C., Lin, W.: Dual-stream shallow networks for facial micro-expression recognition. In: 2019 IEEE International Conference on Image Processing (ICIP), pp. 36–40. IEEE (2019)

    Google Scholar 

  8. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional networks. arXiv preprint arXiv:1609.02907 (2016)

  9. Kumar, A.J.R., Bhanu, B.: Three stream graph attention network using dynamic patch selection for the classification of micro-expressions. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 2476–2485 (2022)

    Google Scholar 

  10. Lei, L., Chen, T., Li, S., Li, J.: Micro-expression recognition based on facial graph representation learning and facial action unit fusion. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1571–1580 (2021)

    Google Scholar 

  11. Lei, L., Li, J., Chen, T., Li, S.: A novel graph-tcn with a graph structured representation for micro-expression recognition. In: Proceedings of the 28th ACM International Conference on Multimedia, pp. 2237–2245 (2020)

    Google Scholar 

  12. Li, L., Ding, P., Chen, H., Wu, X.: Frequent pattern mining in big social graphs. IEEE Trans. Emerg. Topics Comput. Intell. 6(3), 638–648 (2021)

    Article  Google Scholar 

  13. Liong, S.T., See, J., Wong, K., Phan, R.C.W.: Less is more: micro-expression recognition from video using apex frame. Signal Process. Image Commun. 62, 82–92 (2018)

    Article  Google Scholar 

  14. Liu, Y.J., Zhang, J.K., Yan, W.J., Wang, S.J., Zhao, G., Fu, X.: A main directional mean optical flow feature for spontaneous micro-expression recognition. IEEE Trans. Affect. Comput. 7(4), 299–310 (2015)

    Article  Google Scholar 

  15. Lo, L., Xie, H.X., Shuai, H.H., Cheng, W.H.: MER-GCN: micro-expression recognition based on relation modeling with graph convolutional networks. In: 2020 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), pp. 79–84. IEEE (2020)

    Google Scholar 

  16. O’sullivan, M., Frank, M.G., Hurley, C.M., Tiwana, J.: Police lie detection accuracy: the effect of lie scenario. Law Hum Behav. 33(6), 530 (2009)

    Article  Google Scholar 

  17. Pan, H., Xie, L., Lv, Z., Li, J., Wang, Z.: Hierarchical support vector machine for facial micro-expression recognition. Multimedia Tools Appl. 79, 31451–31465 (2020)

    Article  Google Scholar 

  18. Pfister, T., Li, X., Zhao, G., Pietikäinen, M.: Differentiating spontaneous from posed facial expressions within a generic facial expression recognition framework. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 868–875. IEEE (2011)

    Google Scholar 

  19. Pfister, T., Li, X., Zhao, G., Pietikäinen, M.: Recognising spontaneous facial micro-expressions. In: 2011 International Conference on Computer Vision, pp. 1449–1456. IEEE (2011)

    Google Scholar 

  20. Polikovsky, S., Kameda, Y., Ohta, Y.: Facial micro-expressions recognition using high speed camera and 3d-gradient descriptor (2009)

    Google Scholar 

  21. Polikovsky, S., Kameda, Y., Ohta, Y.: Facial micro-expression detection in hi-speed video based on facial action coding system (FACS). IEICE Trans. Inf. Syst. 96(1), 81–92 (2013)

    Article  Google Scholar 

  22. Van Quang, N., Chun, J., Tokuyama, T.: Capsulenet for micro-expression recognition. In: 2019 14th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2019), pp. 1–7. IEEE (2019)

    Google Scholar 

  23. Velickovic, P., et al.: Graph attention networks. STAT 1050(20), 10–48550 (2017)

    Google Scholar 

  24. Verma, M., Vipparthi, S.K., Singh, G.: Affectivenet: affective-motion feature learning for microexpression recognition. IEEE Multimedia 28(1), 17–27 (2020)

    Article  Google Scholar 

  25. Wang, Y., See, J., Phan, R.C.-W., Oh, Y.-H.: LBP with six intersection points: reducing redundant information in LBP-TOP for micro-expression recognition. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9003, pp. 525–537. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16865-4_34

    Chapter  Google Scholar 

  26. Wei, J., Peng, W., Lu, G., Li, Y., Yan, J., Zhao, G.: Geometric graph representation with learnable graph structure and adaptive au constraint for micro-expression recognition. arXiv preprint arXiv:2205.00380 (2022)

  27. Wei, M., Zheng, W., Zong, Y., Jiang, X., Lu, C., Liu, J.: A novel micro-expression recognition approach using attention-based magnification-adaptive networks. In: ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 2420–2424. IEEE (2022)

    Google Scholar 

  28. Zhao, G., Pietikainen, M.: Dynamic texture recognition using local binary patterns with an application to facial expressions. IEEE Trans. Pattern Anal. Mach. Intell. 29(6), 915–928 (2007)

    Article  Google Scholar 

  29. Zhao, X., Ma, H., Wang, R.: STA-GCN: spatio-temporal AU graph convolution network for facial micro-expression recognition. In: Ma, H., et al. (eds.) PRCV 2021. LNCS, vol. 13019, pp. 80–91. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88004-0_7

    Chapter  Google Scholar 

  30. Zhou, L., Mao, Q., Dong, M.: Objective class-based micro-expression recognition through simultaneous action unit detection and feature aggregation. arXiv preprint arXiv:2012.13148 (2020)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Renwei Ba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ba, R., Li, X., Yang, R., Li, C., Liu, Z. (2024). Adaptive and Compact Graph Convolutional Network for Micro-expression Recognition. In: Liu, Q., et al. Pattern Recognition and Computer Vision. PRCV 2023. Lecture Notes in Computer Science, vol 14433. Springer, Singapore. https://doi.org/10.1007/978-981-99-8546-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8546-3_13

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8545-6

  • Online ISBN: 978-981-99-8546-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics