Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Quantitative Fault Injection Analysis

  • Conference paper
  • First Online:
Advances in Cryptology – ASIACRYPT 2023 (ASIACRYPT 2023)

Abstract

Active fault injection is a credible threat to real-world digital systems computing on sensitive data. Arguing about security in the presence of faults is non-trivial, and state-of-the-art criteria are overly conservative and lack the ability of fine-grained comparison. However, comparing two alternative implementations for their security is required to find a satisfying compromise between security and performance. In addition, the comparison of alternative fault scenarios can help optimize the implementation of effective countermeasures.

In this work, we use quantitative information flow analysis to establish a vulnerability metric for hardware circuits under fault injection that measures the severity of an attack in terms of information leakage. Potential use cases range from comparing implementations with respect to their vulnerability to specific fault scenarios to optimizing countermeasures. We automate the computation of our metric by integrating it into a state-of-the-art evaluation tool for physical attacks and provide new insights into the security under an active fault attacker.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://github.com/Chair-for-Security-Engineering/VERICA.

  2. 2.

    We implemented both S-boxes with Toffoli gates in parallel (instead of sequential, as in [20], to get the correct output) and without any registers.

References

  1. Agoyan, M., Dutertre, J.-M., Naccache, D., Robisson, B., Tria, A.: When clocks fail: on critical paths and clock faults. In: Gollmann, D., Lanet, J.-L., Iguchi-Cartigny, J. (eds.) CARDIS 2010. LNCS, vol. 6035, pp. 182–193. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-12510-2_13

    Chapter  Google Scholar 

  2. Akers, S.B.: Binary decision diagrams. IEEE Trans. Computers 27(6), 509–516 (1978)

    Article  Google Scholar 

  3. Alvim, M.S., Chatzikokolakis, K., McIver, A., Morgan, C., Palamidessi, C., Smith, G.: The Science of Quantitative Information Flow. Information Security and Cryptography. Springer, Cham (2020). https://doi.org/10.1007/978-3-319-96131-6

    Book  Google Scholar 

  4. Arribas, V., Wegener, F., Moradi, A., Nikova, S.: Cryptographic fault diagnosis using VerFI. In: HOST 2020, pp. 229–240. IEEE (2020)

    Google Scholar 

  5. Baksi, A., et al.: DEFAULT: cipher level resistance against differential fault attack. In: Tibouchi, M., Wang, H. (eds.) ASIACRYPT 2021, Part II. LNCS, vol. 13091, pp. 124–156. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-92075-3_5

    Chapter  Google Scholar 

  6. Beckers, A., et al.: Design considerations for EM pulse fault injection. In: Belaïd, S., Güneysu, T. (eds.) CARDIS 2019. LNCS, vol. 11833, pp. 176–192. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-42068-0_11

    Chapter  Google Scholar 

  7. Bertoni, G., Daemen, J., Peeters, M., Van Assche, G.: Keccak. In: Johansson, T., Nguyen, P.Q. (eds.) EUROCRYPT 2013. LNCS, vol. 7881, pp. 313–314. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38348-9_19

    Chapter  Google Scholar 

  8. Biham, E., Granboulan, L., Nguyen, P.Q.: Impossible fault analysis of RC4 and differential fault analysis of RC4. In: Gilbert, H., Handschuh, H. (eds.) FSE 2005. LNCS, vol. 3557, pp. 359–367. Springer, Heidelberg (2005). https://doi.org/10.1007/11502760_24

    Chapter  Google Scholar 

  9. Biham, E., Shamir, A.: Differential fault analysis of secret key cryptosystems. In: Kaliski, B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 513–525. Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0052259

    Chapter  Google Scholar 

  10. Blömer, J., Krummel, V.: Fault based collision attacks on AES. In: Breveglieri, L., Koren, I., Naccache, D., Seifert, J.-P. (eds.) FDTC 2006. LNCS, vol. 4236, pp. 106–120. Springer, Heidelberg (2006). https://doi.org/10.1007/11889700_11

    Chapter  Google Scholar 

  11. Bogdanov, A., et al.: PRESENT: an ultra-lightweight block cipher. In: Paillier, P., Verbauwhede, I. (eds.) CHES 2007. LNCS, vol. 4727, pp. 450–466. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74735-2_31

    Chapter  Google Scholar 

  12. Boneh, D., DeMillo, R.A., Lipton, R.J.: On the importance of checking cryptographic protocols for faults. In: Fumy, W. (ed.) EUROCRYPT 1997. LNCS, vol. 1233, pp. 37–51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-69053-0_4

    Chapter  Google Scholar 

  13. Bryant, R.E.: Graph-based algorithms for Boolean function manipulation. IEEE Trans. Computers 35(8), 677–691 (1986)

    Article  Google Scholar 

  14. Cassiers, G., Grégoire, B., Levi, I., Standaert, F.: Hardware private circuits: from trivial composition to full verification. IEEE Trans. Computers 70(10), 1677–1690 (2021)

    Article  MathSciNet  Google Scholar 

  15. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_26

    Chapter  Google Scholar 

  16. Clark, D., Hunt, S., Malacaria, P.: Quantitative analysis of the leakage of confidential data. In: Workshop on Quantitative Aspects of Programming Laguages, QAPL 2001, Satellite Event of PLI 2001, Firenze, Italy, 7 September 2001, pp. 238–251 (2001)

    Google Scholar 

  17. Clark, D., Hunt, S., Malacaria, P.: A static analysis for quantifying information flow in a simple imperative language. J. Comput. Secur. 15(3), 321–371 (2007)

    Article  Google Scholar 

  18. Cnudde, T.D., Nikova, S.: More efficient private circuits II through threshold implementations. In: FDTC 2016, pp. 114–124. IEEE Computer Society (2016)

    Google Scholar 

  19. Courtois, N., Jackson, K., Ware, D.: Fault-algebraic attacks on inner rounds of DES. In: E-Smart 2010 Proceedings: The Future of Digital Security Technologies. Strategies Telecom and Multimedia (2010)

    Google Scholar 

  20. Daemen, J., Dobraunig, C., Eichlseder, M., Groß, H., Mendel, F., Primas, R.: Protecting against statistical ineffective fault attacks. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2020(3), 508–543 (2020)

    Article  Google Scholar 

  21. Daemen, J., Hoffert, S., Assche, G.V., Keer, R.V.: The design of Xoodoo and Xoofff. IACR Trans. Symmetric Cryptol. 2018(4), 1–38 (2018)

    Article  Google Scholar 

  22. Dhooghe, S., Nikova, S.: My gadget just cares for me - how NINA can prove security against combined attacks. In: Jarecki, S. (ed.) CT-RSA 2020. LNCS, vol. 12006, pp. 35–55. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-40186-3_3

    Chapter  Google Scholar 

  23. Dobraunig, C., Eichlseder, M., Korak, T., Mangard, S., Mendel, F., Primas, R.: SIFA: exploiting ineffective fault inductions on symmetric cryptography. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(3), 547–572 (2018)

    Article  Google Scholar 

  24. Faust, S., Grosso, V., Pozo, S.M.D., Paglialonga, C., Standaert, F.: Composable masking schemes in the presence of physical defaults & the robust probing model. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(3), 89–120 (2018)

    Article  Google Scholar 

  25. Feldtkeller, J., Richter-Brockmann, J., Sasdrich, P., Güneysu, T.: CINI MINIS: domain isolation for fault and combined security, pp. 1023–1036. ACM CCS (2022)

    Google Scholar 

  26. Feng, J., Chen, H., Li, Y., Jiao, Z., Xi, W.: A framework for evaluation and analysis on infection countermeasures against fault attacks. IEEE Trans. Inf. Forensics Secur. 15, 391–406 (2020)

    Article  Google Scholar 

  27. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1_21

    Chapter  Google Scholar 

  28. Gnad, D.R.E., Oboril, F., Tahoori, M.B.: Voltage drop-based fault attacks on FPGAs using valid bitstreams. In: 27th International Conference on Field Programmable Logic and Applications, FPL 2017, Ghent, Belgium, 4–8 September 2017, pp. 1–7 (2017)

    Google Scholar 

  29. Gruss, D., Maurice, C., Mangard, S.: Rowhammer.js: a remote software-induced fault attack in JavaScript. In: Caballero, J., Zurutuza, U., Rodríguez, R.J. (eds.) DIMVA 2016. LNCS, vol. 9721, pp. 300–321. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-40667-1_15

    Chapter  Google Scholar 

  30. Guo, X., Dutta, R.G., He, J., Tehranipoor, M.M., Jin, Y.: QIF-Verilog: quantitative information-flow based hardware description languages for pre-silicon security assessment. In: IEEE International Symposium on Hardware Oriented Security and Trust, HOST 2019, McLean, VA, USA, 5–10 May 2019, pp. 91–100 (2019)

    Google Scholar 

  31. Hadžić, V., Primas, R., Bloem, R.: Proving SIFA protection of masked redundant circuits. In: Hou, Z., Ganesh, V. (eds.) ATVA 2021. LNCS, vol. 12971, pp. 249–265. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-88885-5_17

    Chapter  Google Scholar 

  32. Hutchinson, M.: A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines. Commun. Stat. Simul. Comput. 19(2), 433–450 (1990)

    Article  MathSciNet  Google Scholar 

  33. Ishai, Y., Sahai, A., Wagner, D.: Private Circuits: Securing Hardware against Probing Attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_27

    Chapter  Google Scholar 

  34. Khanna, P., Rebeiro, C., Hazra, A.: XFC: a framework for eXploitable fault characterization in block ciphers. In: Proceedings of the 54th Annual Design Automation Conference, DAC 2017, Austin, TX, USA, 18–22 June 2017, pp. 8:1–8:6 (2017)

    Google Scholar 

  35. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9

    Chapter  Google Scholar 

  36. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25

    Chapter  Google Scholar 

  37. Li, Y., Sakiyama, K., Gomisawa, S., Fukunaga, T., Takahashi, J., Ohta, K.: Fault sensitivity analysis. In: Mangard, S., Standaert, F.-X. (eds.) CHES 2010. LNCS, vol. 6225, pp. 320–334. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15031-9_22

    Chapter  Google Scholar 

  38. Liu, Q., Ning, B., Deng, P.: Information theory-based quantitative evaluation method for countermeasures against fault injection attacks. IEEE Access 7, 141920–141928 (2019)

    Article  Google Scholar 

  39. Mao, B., Hu, W., Althoff, A., Matai, J., Oberg, J., Mu, D., Sherwood, T., Kastner, R.: Quantifying timing-based information flow in cryptographic hardware. In: Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, ICCAD 2015, Austin, TX, USA, 2–6 November 2015, pp. 552–559 (2015)

    Google Scholar 

  40. Patranabis, S., Chakraborty, A., Mukhopadhyay, D.: Fault Tolerant Infective Countermeasure for AES. J. Hardw. Syst. Secur. 1(1), 3–17 (2017)

    Article  Google Scholar 

  41. Reimann, L.M., Hanel, L., Sisejkovic, D., Merchant, F., Leupers, R.: QFlow: quantitative information flow for security-aware hardware design in verilog. In: 39th IEEE International Conference on Computer Design, ICCD 2021, Storrs, CT, USA, 24–27 October 2021, pp. 603–607 (2021)

    Google Scholar 

  42. Richter-Brockmann, J., Feldtkeller, J., Sasdrich, P., Güneysu, T.: VERICA - verification of combined attacks: automated formal verification of security against simultaneous information leakage and tampering. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2022(4), 255–284 (2022)

    Article  Google Scholar 

  43. Richter-Brockmann, J., Rezaei Shahmirzadi, A., Sasdrich, P., Moradi, A., Güneysu, T.: FIVER - robust verification of countermeasures against fault injections. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2021(4), 447–473 (2021)

    Article  Google Scholar 

  44. Richter-Brockmann, J., Sasdrich, P., Güneysu, T.: Revisiting fault adversary models - hardware faults in theory and practice. IEEE Trans. Computers 72, 1–14 (2022)

    Google Scholar 

  45. Saha, S., Alam, M., Bag, A., Mukhopadhyay, D., Dasgupta, P.: Learn from your faults: leakage assessment in fault attacks using deep learning. J. Cryptol. 36(3), 19 (2023)

    Article  MathSciNet  Google Scholar 

  46. Saha, S., Kumar, S.N., Patranabis, S., Mukhopadhyay, D., Dasgupta, P.: ALAFA: automatic leakage assessment for fault attack countermeasures. In: Proceedings of the 56th Annual Design Automation Conference 2019, DAC 2019, Las Vegas, NV, USA, 02–06 June 2019, p. 136 (2019)

    Google Scholar 

  47. Saha, S., Mukhopadhyay, D., Dasgupta, P.: ExpFault: an automated framework for exploitable fault characterization in block ciphers. IACR Trans. Cryptogr. Hardw. Embed. Syst. 2018(2), 242–276 (2018)

    Article  Google Scholar 

  48. Sakiyama, K., Li, Y., Iwamoto, M., Ohta, K.: Information-theoretic approach to optimal differential fault analysis. IEEE Trans. Inf. Forensics Secur. 7(1), 109–120 (2012)

    Article  Google Scholar 

  49. Schneider, T., Moradi, A., Güneysu, T.: ParTI – towards combined hardware countermeasures against side-channel and fault-injection attacks. In: Robshaw, M., Katz, J. (eds.) CRYPTO 2016. LNCS, vol. 9815, pp. 302–332. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53008-5_11

    Chapter  Google Scholar 

  50. Selmane, N., Guilley, S., Danger, J.: Practical setup time violation attacks on AES. In: EDCC-7 2008, pp. 91–96. IEEE Computer Society (2008)

    Google Scholar 

  51. Shahmirzadi, A.R., Rasoolzadeh, S., Moradi, A.: Impeccable circuits II. In: DAC 2020, pp. 1–6. IEEE (2020)

    Google Scholar 

  52. Skorobogatov, S.P., Anderson, R.J.: Optical fault induction attacks. In: Kaliski, B.S., Koç, K., Paar, C. (eds.) CHES 2002. LNCS, vol. 2523, pp. 2–12. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-36400-5_2

    Chapter  Google Scholar 

  53. Smith, G.: On the foundations of quantitative information flow. In: de Alfaro, L. (ed.) FoSSaCS 2009. LNCS, vol. 5504, pp. 288–302. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00596-1_21

    Chapter  Google Scholar 

  54. Sullivan, G.A., Sippe, J., Heninger, N., Wustrow, E.: Open to a fault: on the passive compromise of TLS keys via transient errors. In: 31st USENIX Security Symposium, USENIX Security 2022, Boston, MA, USA, 10–12 August 2022, pp. 233–250 (2022)

    Google Scholar 

  55. Tang, A., Sethumadhavan, S., Stolfo, S.J.: CLKSCREW: exposing the perils of security-oblivious energy management. In: 26th USENIX Security Symposium, USENIX Security 2017, Vancouver, BC, Canada, 16–18 August 2017, pp. 1057–1074 (2017)

    Google Scholar 

Download references

Acknowledgments

We would like to thank Jan Richter-Brockmann and Pascal Sasdrich for fruitful discussions on fault security and support with the tool VERICA. The work described was funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy - EXC 2092 CASA - 390781972, by the German Federal Ministry of Education and Research BMBF through the projects VE-HEP (16KIS1345) and 6GEM (16KISK038) and by the European Commission under the project CONVOLVE (101070374). This research was also supported in part by NSF Award 2219810.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakob Feldtkeller .

Editor information

Editors and Affiliations

A Probabilistic Computation

A Probabilistic Computation

1.1 A.1 Methodology

The isolated computation of \(V[S\mid Y, Y'=y']\) for each \(y'\in \mathcal {Y}\) allows not only the parallel computation of the vulnerability but also a probabilistic computation. Here, instead of computing the exact value of \(V[S\mid Y, Y']\), we can approximate it using a subset of \(\mathcal {Y}\). Specifically, we use the Monte-Carlo method [32], where the mean of a set of samples is used to estimate the mean of a probability distribution. This is a good approximation if the sample set is large enough and each sample is chosen independently. The quality of the approximation is given by the Confidence Interval (CI), which provides a range in which the true distribution mean lies with a certain probability (given by the confidence level).

Fig. 13.
figure 13

Leakage over the number of runs for probabilistic computation with a set fault injected to the first input (i.e., \(x_0\) or \(x_{0,0}\)) Leakage is given in blue while upper and lower bounds of the confidence range (\(95\%\)) are given in black. Lighter colors represent different executions. The precise leakage is marked in red. (Color figure online)

To compute the FIA vulnerability probabilistically, we randomly select N faulty output values \(y'\in \mathcal {Y}\) and compute \(V[S\mid Y, Y'=y']\) (as done in Algorithm 1). We then estimate the overall vulnerability by scaling the mean of the samples by the number of existing faulty outputs \(y'\):

$$\begin{aligned} V[S\mid Y, Y'] \approx |\mathcal {Y}| \frac{\sum _{i=0}^N V[S\mid Y, Y'=y'_i]}{N} \end{aligned}$$
(2)

Then the CI can be calculated using the Central Limit Theorem as \((\mu - z \frac{\sigma }{\sqrt{N}}, \mu + z \frac{\sigma }{\sqrt{N}})\), where \(\mu \) is the sample mean, \(\sigma \) is the sample standard deviation, and z is the z-score of the confidence level. The z-score of common confidence levels is 1.64 for a \(90\%\) confidence level, 1.96 for a \(95\%\) confidence level, and 2.57 for a \(99\%\) confidence level. For efficient computation, an iterative formula for mean and variance can be used. The CI is defined for the mean vulnerability and therefore must be scaled up for the overall vulnerability, similar to Eq. 2. This results in a CI that grows with the number of possible output values.

1.2 A.2 Evaluation

In Fig. 13, we show the convergence of the estimated leakage to the real leakage over the number of executions for four different circuits. While the estimation improves with an increasing number of executions, several thousand executions are required to obtain a high-confidence result. Thus, this only becomes interesting for circuits with a high number of output bits, and for most of the designs we analyzed, the exact computation is faster than running the probabilistic algorithm so often. Interestingly, however, there are some cases where the probabilistic algorithm yields the exact leakage after only one iteration (cf. Fig. 13b and 13d). This is the case when the vulnerability is the same for all possible output values, i.e., the expression \(\max _{s}(\sum _{x} \textsf{Pr}[s] \textsf{Pr}[x]\textsf{Pr}[y \mid x,s]\sum _{f} \textsf{Pr}[f]\textsf{Pr}[y' \mid x,s])\) is the same for all \((y, y')\). Further investigation is required to determine the set of circuits for which this holds. If this can be easily determined, the computation can be accelerated significantly, e.g., running 10 iterations for the \(4\times \) PRESENT S-box & KeyAdd takes only 3.87 s instead of about 3.5 h to get the exact leakage for four faults.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 International Association for Cryptologic Research

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Feldtkeller, J., Güneysu, T., Schaumont, P. (2023). Quantitative Fault Injection Analysis. In: Guo, J., Steinfeld, R. (eds) Advances in Cryptology – ASIACRYPT 2023. ASIACRYPT 2023. Lecture Notes in Computer Science, vol 14441. Springer, Singapore. https://doi.org/10.1007/978-981-99-8730-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8730-6_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8729-0

  • Online ISBN: 978-981-99-8730-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics