Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

PMPI: Patch-Based Multiplane Images for Real-Time Rendering of Neural Radiance Fields

  • Conference paper
  • First Online:
Artificial Intelligence (CICAI 2023)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 14473))

Included in the following conference series:

  • 588 Accesses

Abstract

Neural radiance fields (NeRFs) have made it possible to synthesize novel views in a photo-realistic manner. However, real-time view synthesis with superior quality and low consuming remains a challenge due to the dense but uniform sampling of NeRFs. This paper proposes Patch-based Multiplane Images (PMPIs) for real-time view synthesis. PMPI is an adaptive combination of 3D patches, each encodes an implicit 2D neural radiance field. We then propose a method to learn our PMPI. The structure of our PMPI is periodically updated during training. Patches of PMPI are thus assembled around visible contents. We compare our method with six the state-of-the-art techniques, including other plane-based methods. The proposed method achieves the highest PSNR, SSIM and LPIPS scores and enables real-time over 50fps rendering. We also prove the adaptability of PMPI with an ablation study on the number of sampling points.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mildenhall, B., Srinivasan, P., Tancik, M., Barron, J., Ramamoorthi, R., Ng, R.: Nerf: representing scenes as neural radiance fields for view synthesis. In: European Conference on Computer Vision (2020)

    Google Scholar 

  2. Xu, Q., et al.: Point-nerf: Point-based neural radiance fields. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5438–5448 (2022)

    Google Scholar 

  3. Deng, K., Liu, A., Zhu, J.-Y., Ramanan, D.: Depth-supervised nerf: fewer views and faster training for free. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12882–12891 (2022)

    Google Scholar 

  4. Roessle, B., Barron, J.T., Mildenhall, B., Srinivasan, P.P., Nießner, M.: Dense depth priors for neural radiance fields from sparse input views. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12892–12901 (2022)

    Google Scholar 

  5. Chen, Z., Funkhouser, T., Hedman, P., Tagliasacchi, A.: Mobilenerf: exploiting the polygon rasterization pipeline for efficient neural field rendering on mobile architectures. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 16569–16578 (2023)

    Google Scholar 

  6. Hedman, P., Srinivasan, P.P., Mildenhall, B., Barron, J.T., Debevec, P.: Baking neural radiance fields for real-time view synthesis. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 5875–5884 (2021)

    Google Scholar 

  7. Lin, Z.-H., Ma, W.-C., Hsu, H.-Y., Wang, Y.-C.F., Wang, S.: Neurmips: neural mixture of planar experts for view synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 15702–15712 (2022)

    Google Scholar 

  8. Liu, L., Gu, J., Zaw Lin, K., Chua, T.-S., Theobalt, C.: Neural sparse voxel fields. In: Advances in Neural Information Processing Systems, vol. 33, pp. 15651–15663 (2020)

    Google Scholar 

  9. Fridovich-Keil, S., Yu, A., Tancik, M., Chen, Q., Recht, B., Kanazawa, A.: Plenoxels: radiance fields without neural networks. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 5501–5510 (2022)

    Google Scholar 

  10. Aliev, K.-A., Ulyanov, D., Lempitsky, V.S.: Neural point-based graphics. In: ECCV (2020)

    Google Scholar 

  11. Rückert, D., Franke, L., Stamminger, M.: ADOP: approximate differentiable one-pixel point rendering. ACM Trans. Graph. 41(4), 1–14 (2022)

    Google Scholar 

  12. Riegler, G., Koltun, V.: Free view synthesis. In: Vedaldi, A., Bischof, H., Brox, T., Frahm, J.-M. (eds.) ECCV 2020. LNCS, vol. 12364, pp. 623–640. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58529-7_37

    Chapter  Google Scholar 

  13. Riegler, G., Koltun, V.: Stable view synthesis. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 12216–12225 (2021)

    Google Scholar 

  14. Zhou, T., Tucker, R., Flynn, J., Fyffe, G., Snavely, N.: Stereo magnification: learning view synthesis using multiplane images. ACM Trans. Graph. 37(4), 1–12 (2018)

    Article  Google Scholar 

  15. Wizadwongsa, S., Phongthawee, P., Yenphraphai, J., Suwajanakorn, S.: Nex: real-time view synthesis with neural basis expansion. In: 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 8530–8539 (2021)

    Google Scholar 

  16. Flynn, J., et al.: DeepView: view synthesis with learned gradient descent. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2362–2371 (2019)

    Google Scholar 

  17. Tucker, R., Snavely, N.: Single-view view synthesis with multiplane images. In: 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 548–557 (2020)

    Google Scholar 

  18. Srinivasan, P.P., Tucker, R., Barron, J.T., Ramamoorthi, R., Ng, R., Snavely, N.: Pushing the boundaries of view extrapolation with multiplane images. In: 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pp. 175–184 (2019)

    Google Scholar 

  19. Mildenhall, B., et al.: Local light field fusion: practical view synthesis with prescriptive sampling guidelines. ACM Trans. Graph. 38(4), 1–14 (2019)

    Article  Google Scholar 

  20. Haines, E.: Essential ray tracing. Glas 89, 33–77 (1989)

    Google Scholar 

  21. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR, vol. abs/1412.6980 (2015)

    Google Scholar 

  22. Wang, Z.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  23. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 586–595 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiong Liu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, X., Yang, Y., Liu, Q., Tao, C., Liu, Q. (2024). PMPI: Patch-Based Multiplane Images for Real-Time Rendering of Neural Radiance Fields. In: Fang, L., Pei, J., Zhai, G., Wang, R. (eds) Artificial Intelligence. CICAI 2023. Lecture Notes in Computer Science(), vol 14473. Springer, Singapore. https://doi.org/10.1007/978-981-99-8850-1_22

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-8850-1_22

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-8849-5

  • Online ISBN: 978-981-99-8850-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics