Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Privacy Attacks and Defenses in Machine Learning: A Survey

  • Conference paper
  • First Online:
Proceedings of the 13th International Conference on Computer Engineering and Networks (CENet 2023)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 1127))

Included in the following conference series:

  • 386 Accesses

Abstract

As machine learning has gradually become an important technology in the field of artificial intelligence, its development is also facing challenges in terms of privacy. This article aims to summarize the attack methods and defense strategies for machine learning models in recent years. Attack methods include embedding inversion attack, attribute inference attack, membership inference attack and model extraction attack, etc. Defense measures include but are not limited to homomorphic encryption, adversarial training, differential privacy, secure multi-party computation, etc., focusing on the analysis of privacy protection issues in machine learning, and providing certain references and references for related research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Akhtar, N., Mian, A.: Threat of adversarial attacks on deep learning in computer vision: a survey. IEEE Access 6, 14410–14430 (2018)

    Article  Google Scholar 

  2. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Concrete problems in ai safety (2016). arXiv:1606.06565

  3. Arumugam, K., Naved, M., Shinde, P.P., Leiva-Chauca, O., Huaman-Osorio, A., Gonzales-Yanac, T.: Multiple disease prediction using machine learning algorithms. Mater. Today Proc. 80, 3682–3685 (2023)

    Article  Google Scholar 

  4. Bae, H., Jang, J., Jung, D., Jang, H., Ha, H., Lee, H., Yoon, S.: Security and privacy issues in deep learning (2018). arXiv:1807.11655

  5. Barreno, M., Nelson, B., Joseph, A.D., Tygar, J.D.: The security of machine learning. Mach. Learn. 81, 121–148 (2010)

    Article  MathSciNet  Google Scholar 

  6. Braun, L., Huppert, M., Khayata, N., Schneider, T., Tkachenko, O.: Fuse–flexible file format and intermediate representation for secure multi-party computation. Cryptology ePrint Archive (2023)

    Google Scholar 

  7. Doan, T.V.T., Messai, M.L., Gavin, G., Darmont, J.: A survey on implementations of homomorphic encryption schemes. J. Supercomput. 1–42 (2023)

    Google Scholar 

  8. Fan, C., Jia, P., Lin, M., Wei, L., Guo, P., Zhao, X., Liu, X.: Cloud-assisted private set intersection via multi-key fully homomorphic encryption. Mathematics 11(8), 1784 (2023)

    Article  Google Scholar 

  9. Feldman, V., McMillan, A., Talwar, K.: Stronger privacy amplification by shuffling for rényi and approximate differential privacy. In: Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 4966–4981. SIAM (2023)

    Google Scholar 

  10. Flores Fernández, A., Sánchez Morales, E., Botsch, M., Facchi, C., García Higuera, A.: Generation of correction data for autonomous driving by means of machine learning and on-board diagnostics. Sensors 23(1), 159 (2023)

    Article  Google Scholar 

  11. Gao, C., Yu, J.: Securerc: a system for privacy-preserving relation classification using secure multi-party computation. Comput. Secur. 128, 103, 142 (2023)

    Google Scholar 

  12. Gong, X., Wang, Q., Chen, Y., Yang, W., Jiang, X.: Model extraction attacks and defenses on cloud-based machine learning models. IEEE Commun. Mag. 58(12), 83–89 (2020)

    Article  Google Scholar 

  13. Haug, C.J., Drazen, J.M.: Artificial intelligence and machine learning in clinical medicine, 2023. N. Engl. J. Med. 388(13), 1201–1208 (2023)

    Article  Google Scholar 

  14. Hayet, I., Yao, Z., Luo, B.: Invernet: An inversion attack framework to infer fine-tuning datasets through word embeddings. In: Findings of the Association for Computational Linguistics: EMNLP 2022, pp. 5009–5018 (2022)

    Google Scholar 

  15. Hu, H., Salcic, Z., Sun, L., Dobbie, G., Yu, P.S., Zhang, X.: Membership inference attacks on machine learning: a survey. ACM Comput. Surv. (CSUR) 54(11s), 1–37 (2022)

    Article  Google Scholar 

  16. Jagielski, M., Carlini, N., Berthelot, D., Kurakin, A., Papernot, N.: High accuracy and high fidelity extraction of neural networks. In: Proceedings of the 29th USENIX Conference on Security Symposium, pp. 1345–1362 (2020)

    Google Scholar 

  17. Jain, N., Pal, S.K., Upadhyay, D.K.: Implementation and analysis of homomorphic encryption schemes. Int. J. Cryptogr. Inf. Secur. (IJCIS) 2(2), 27–44 (2012)

    Google Scholar 

  18. Ji, S., Du, T., Li, J., Shen, C., Li, B.: Security and privacy of machine learning models: a survey. Ruan Jian Xue Bao/J. Softw. 32(1), 41–67 (2021)

    Google Scholar 

  19. Jia, J., Gong, N.Z.: Attriguard: A practical defense against attribute inference attacks via adversarial machine learning. In: 27th \(\{\)USENIX\(\}\) security symposium (\(\{\)USENIX\(\}\) security 18), pp. 513–529 (2018)

    Google Scholar 

  20. Kamal, A.A.A.M., Iwamura, K.: Privacy preserving multi-party multiplication of polynomials based on (k, n) threshold secret sharing. ICT Express (2023)

    Google Scholar 

  21. Li, F., Chen, T., Zhu, S.: A (t, n) threshold quantum secret sharing scheme with fairness. Int. J. Theor. Phys. 62(6), 119 (2023)

    Article  MathSciNet  Google Scholar 

  22. Li, M., Tian, Z., Du, X., Yuan, X., Shan, C., Guizani, M.: Power normalized cepstral robust features of deep neural networks in a cloud computing data privacy protection scheme. Neurocomputing 518, 165–173 (2023)

    Article  Google Scholar 

  23. Li, Y., Wang, R., Li, Y., Zhang, M., Long, C.: Wind power forecasting considering data privacy protection: A federated deep reinforcement learning approach. Appl. Energy 329, 120, 291 (2023)

    Google Scholar 

  24. Lin, T.H., Lee, Y.S., Chang, F.C., Chang, J.M., Wu, P.Y.: Protecting sensitive attributes by adversarial training through class-overlapping techniques. IEEE Trans. Inf. Forensics Secur. (2023)

    Google Scholar 

  25. Liu, J., Lau, C.P., Chellappa, R.: Diffprotect: generate adversarial examples with diffusion models for facial privacy protection (2023). arXiv:2305.13625

  26. Liu, X., Tu, X.F., Luo, D., Xu, G., Xiong, N.N., Chen, X.B.: Secure multi-party computation of graphs’ intersection and union under the malicious model. Electronics 12(2), 258 (2023)

    Article  Google Scholar 

  27. Liu, Y., Feng, Q., Peng, C., Luo, M., He, D.: Asymmetric secure multi-party signing protocol for the identity-based signature scheme in the IEEE p1363 standard for public key cryptography. In: Emerging Information Security and Applications: Third International Conference, EISA 2022, Wuhan, China, October 29–30, 2022, Proceedings, pp. 1–20. Springer (2023)

    Google Scholar 

  28. Liu, Y., Wen, R., He, X., Salem, A., Zhang, Z., Backes, M., De Cristofaro, E., Fritz, M., Zhang, Y.: \(\{\)ML-Doctor\(\}\): Holistic risk assessment of inference attacks against machine learning models. In: 31st USENIX Security Symposium (USENIX Security 22), pp. 4525–4542 (2022)

    Google Scholar 

  29. Luo, X., Chen, Z., Tao, M., Yang, F.: Encrypted semantic communication using adversarial training for privacy preserving. IEEE Commun. Lett. (2023)

    Google Scholar 

  30. Mahesh, B.: Machine learning algorithms-a review. Int. J. Sci. Res. (IJSR). [Internet] 9, 381–386 (2020)

    Google Scholar 

  31. Moerland, T.M., Broekens, J., Plaat, A., Jonker, C.M., et al.: Model-based reinforcement learning: a survey. Found. Trends® Mach. Learn. 16(1), 1–118 (2023)

    Google Scholar 

  32. Ning, X., Tian, W., He, F., Bai, X., Sun, L., Li, W.: Hyper-sausage coverage function neuron model and learning algorithm for image classification. Pattern Recognit. 136, 109, 216 (2023)

    Google Scholar 

  33. Nouman, M., Qasim, U., Nasir, H., Almasoud, A., Imran, M., Javaid, N.: Malicious node detection using machine learning and distributed data storage using blockchain in wsns. IEEE Access (2023)

    Google Scholar 

  34. Papernot, N., McDaniel, P., Sinha, A., Wellman, M.: Towards the science of security and privacy in machine learning (2016). arXiv:1611.03814

  35. Papernot, N., McDaniel, P., Sinha, A., Wellman, M.P.: Sok: security and privacy in machine learning. In: 2018 IEEE European Symposium on Security and Privacy (EuroS &P), pp. 399–414. IEEE (2018)

    Google Scholar 

  36. Pawase, A.D., Mandage, V.T., Panchal, S.S., Patil, S.Y., Deokar, P.: A shop recommendation system to empower retailers using machine learning

    Google Scholar 

  37. Rashid, K., Saeed, Y., Ali, A., Jamil, F., Alkanhel, R., Muthanna, A.: An adaptive real-time malicious node detection framework using machine learning in vehicular ad-hoc networks (vanets). Sensors 23(5), 2594 (2023)

    Article  Google Scholar 

  38. Salem, A., Zhang, Y., Humbert, M., Berrang, P., Fritz, M., Backes, M.: Ml-leaks: model and data independent membership inference attacks and defenses on machine learning models (2018). arXiv:1806.01246

  39. Salih, A., Zeebaree, S.T., Ameen, S., Alkhyyat, A., Shukur, H.M.: A survey on the role of artificial intelligence, machine learning and deep learning for cybersecurity attack detection. In: 2021 7th International Engineering Conference “Research & Innovation amid Global Pandemic” (IEC), pp. 61–66. IEEE (2021)

    Google Scholar 

  40. Sen, J.: Homomorphic encryption-theory and application. In: Theory and Practice of Cryptography and Network Security Protocols and Technologies, vol. 31 (2013)

    Google Scholar 

  41. Sharifani, K., Amini, M.: Machine learning and deep learning: a review of methods and applications. World Inf. Technol. Eng. J. 10(07), 3897–3904 (2023)

    Google Scholar 

  42. Song, C., Huang, R.: Secure convolution neural network inference based on homomorphic encryption. Appl. Sci. 13(10), 6117 (2023)

    Article  Google Scholar 

  43. Sun, S., Huang, H., Peng, T., Shen, C., Wang, D.: A data privacy protection diagnosis framework for multiple machines vibration signals based on a swarm learning algorithm. IEEE Trans. Instrum. Meas. 72, 1–9 (2023)

    Google Scholar 

  44. Truex, S., Liu, L., Gursoy, M.E., Yu, L., Wei, W.: Towards demystifying membership inference attacks (2018). arXiv:1807.09173

  45. Venkateswar, K.: Using Amazon Sagemaker to Operationalize Machine Learning. Santa Clara, CA. USENIX Association (2019)

    Google Scholar 

  46. Weng, Z., Qin, Z., Tao, X., Pan, C., Liu, G., Li, G.Y.: Deep learning enabled semantic communications with speech recognition and synthesis. IEEE Trans. Wirel. Commun. (2023)

    Google Scholar 

  47. Wu, J., Huang, Z., Hu, Z., Lv, C.: Toward human-in-the-loop ai: enhancing deep reinforcement learning via real-time human guidance for autonomous driving. Engineering 21, 75–91 (2023)

    Article  Google Scholar 

  48. Xin, J., Lyu, X., Ma, J.: Natural backdoor attacks on speech recognition models. In: Machine Learning for Cyber Security: 4th International Conference, ML4CS 2022, Guangzhou, China, December 2–4, 2022, Proceedings, Part I, pp. 597–610. Springer (2023)

    Google Scholar 

  49. Xu, M., Yoon, S., Fuentes, A., Park, D.S.: A comprehensive survey of image augmentation techniques for deep learning. Pattern Recognit. 109347 (2023)

    Google Scholar 

  50. Xu, Q., He, X., Lyu, L., Qu, L., Haffari, G.: Beyond model extraction: imitation attack for black-box nlp apis. arXiv e-prints pp. arXiv–2108 (2021)

    Google Scholar 

  51. Ye, J., Maddi, A., Murakonda, S.K., Bindschaedler, V., Shokri, R.: Enhanced membership inference attacks against machine learning models. In: Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, pp. 3093–3106 (2022)

    Google Scholar 

  52. Yi, T., Chen, X., Zhu, Y., Ge, W., Han, Z.: Review on the application of deep learning in network attack detection. J. Netw. Comput. Appl. 212, 103,580 (2023)

    Google Scholar 

  53. Yu, Y., Li, Z., Tu, Y., Yuan, Y., Li, Y., Pang, Z.: Blockchain-based distributed identity cryptography key management. In: 2023 15th International Conference on Computer Research and Development (ICCRD), pp. 236–240. IEEE (2023)

    Google Scholar 

  54. Zhang, J., Tian, H., Xiong, K., Tang, Y.L., Yang, L.: Fair multi-party private set intersection protocol based on cloud server. J. Comput. Appl. 0 (2023)

    Google Scholar 

  55. Zhao, B.Z.H., Agrawal, A., Coburn, C., Asghar, H.J., Bhaskar, R., Kaafar, M.A., Webb, D., Dickinson, P.: On the (in) feasibility of attribute inference attacks on machine learning models. In: 2021 IEEE European Symposium on Security and Privacy (EuroS &P), pp. 232–251. IEEE (2021)

    Google Scholar 

  56. Zheng, R., Qu, L., Cui, B., Shi, Y., Yin, H.: Automl for deep recommender systems: a survey. ACM Trans. Inf. Syst. (2023)

    Google Scholar 

Download references

Acknowledgement

The Opening Project of Intelligent Policing Key Laboratory of Sichuan Province, No. ZNJW2023KFMS004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xun Han .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Liu, W., Han, X., He, M. (2024). Privacy Attacks and Defenses in Machine Learning: A Survey. In: Zhang, Y., Qi, L., Liu, Q., Yin, G., Liu, X. (eds) Proceedings of the 13th International Conference on Computer Engineering and Networks. CENet 2023. Lecture Notes in Electrical Engineering, vol 1127. Springer, Singapore. https://doi.org/10.1007/978-981-99-9247-8_41

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9247-8_41

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9246-1

  • Online ISBN: 978-981-99-9247-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics