Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

CoME: Collaborative Model Ensemble for Fast and Accurate Predictions

  • Conference paper
  • First Online:
Computer Supported Cooperative Work and Social Computing (ChineseCSCW 2023)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 2013))

  • 352 Accesses

Abstract

Ensemble learning, which combines multiple weak classifiers to form a strong classifier, has been shown to improve model accuracy and generalization. In the course of our research on convolutional neural networks (CNNs), we have discovered a novel model aggregation method called CoME, which accelerates model training speed, enhances model precision, and exhibits good interpretability. Starting from the relationship between convolutions and planar point classification problems, this paper explores the working mechanism of convolutions and their classification principles. We demonstrate how to leverage these principles to construct our ensemble model. Additionally, during the process of model simplification, we derive the Softmax function and gain new insights into the numerical values flowing through the model, referred to as logarithmic probability. Finally, we conduct experiments to validate the effectiveness of our model.

This research was funded by the National Natural Science Foundation of China, grant number 42172323.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen, T., Guestrin, C.: XGBoost: a scalable tree boosting system. In: Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 785–794 (2016)

    Google Scholar 

  2. Clanuwat, T., Bober-Irizar, M., Kitamoto, A., Lamb, A., Yamamoto, K., Ha, D.: Deep learning for classical Japanese literature. arXiv preprint arXiv:1812.01718 (2018)

  3. Cohen, G., Afshar, S., Tapson, J., Van Schaik, A.: EMNIST: extending MNIST to handwritten letters. In: 2017 International Joint Conference on Neural Networks (IJCNN), pp. 2921–2926. IEEE (2017)

    Google Scholar 

  4. Cong, S., Zhou, Y.: A review of convolutional neural network architectures and their optimizations. Artif. Intell. Rev. 56(3), 1905–1969 (2023)

    Article  Google Scholar 

  5. Fernández-Delgado, M., Cernadas, E., Barro, S., Amorim, D.: Do we need hundreds of classifiers to solve real world classification problems? J. Mach. Learn. Res. 15(1), 3133–3181 (2014)

    MathSciNet  Google Scholar 

  6. Fernandez-Fernandez, R., Victores, J.G., Estevez, D., Balaguer, C.: Quick, stat!: a statistical analysis of the quick, draw! dataset. arXiv preprint arXiv:1907.06417 (2019)

  7. Gambella, C., Ghaddar, B., Naoum-Sawaya, J.: Optimization problems for machine learning: a survey. Eur. J. Oper. Res. 290(3), 807–828 (2021)

    Article  MathSciNet  Google Scholar 

  8. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17(1), 2096-2030 (2016)

    Google Scholar 

  9. Krizhevsky, A., Hinton, G., et al.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  10. Kuncheva, L.I.: Combining Pattern Classifiers: Methods and Algorithms. Wiley, Hoboken (2014)

    Book  Google Scholar 

  11. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  12. Netzer, Y., Wang, T., Coates, A., Bissacco, A., Wu, B., Ng, A.Y.: Reading digits in natural images with unsupervised feature learning (2011)

    Google Scholar 

  13. Opitz, D., Maclin, R.: Popular ensemble methods: an empirical study. J. Artif. Intell. Res. 11, 169–198 (1999)

    Article  Google Scholar 

  14. Petrov, V.V.: Sums of independent random variables. In: Sums of Independent Random Variables. De Gruyter (2022)

    Google Scholar 

  15. Prabhu, V.U.: Kannada-MNIST: a new handwritten digits dataset for the Kannada language. arXiv preprint arXiv:1908.01242 (2019)

  16. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms. arXiv preprint arXiv:1708.07747 (2017)

  17. Zhang, C., Ma, Y.: Ensemble Machine Learning: Methods and Applications. Springer, New York (2012). https://doi.org/10.1007/978-1-4419-9326-7

    Book  Google Scholar 

  18. Zhang, Y., Tiňo, P., Leonardis, A., Tang, K.: A survey on neural network interpretability. IEEE Trans. Emerg. Top. Comput. Intell. 5(5), 726–742 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xianchuan Yu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Deng, L., Gao, X., Xiao, Y., Chang, S., Cheng, X., Yu, X. (2024). CoME: Collaborative Model Ensemble for Fast and Accurate Predictions. In: Sun, Y., Lu, T., Wang, T., Fan, H., Liu, D., Du, B. (eds) Computer Supported Cooperative Work and Social Computing. ChineseCSCW 2023. Communications in Computer and Information Science, vol 2013. Springer, Singapore. https://doi.org/10.1007/978-981-99-9640-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9640-7_16

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9639-1

  • Online ISBN: 978-981-99-9640-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics