Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

SRSSIS: Super-Resolution Screen Space Irradiance Sampling for Lightweight Collaborative Web3D Rendering Architecture

  • Conference paper
  • First Online:
Computer-Aided Design and Computer Graphics (CADGraphics 2023)

Abstract

In traditional collaborative rendering architecture, the front-end computes direct lighting, which imposes certain performance requirements on the front-end devices. To further reduce the front-end load in complex 3D scenes, we propose a Super-resolution Screen Space Irradiance Sampling technique (SRSSIS), which is applied to our designed architecture, a lightweight collaborative rendering system built on Web3D. In our system, the back-end samples low-resolution screen-space irradiance, while the front-end implements our SRSSIS technique to reconstruct high-resolution and high-quality images. We also introduce frame interpolation in the architecture to further reduce the backend load and the transmission frequency. Moreover, we propose a self-adaptive sampling strategy to improve the robustness of super-resolution. Our experiments show that, under ideal conditions, our reconstruction performance is comparable to DLSS and FSR real-time super-resolution technology. The bandwidth consumption of our system ranges from 8% to 66% of pixel streaming at different super-resolution rates, while the back-end’s computational cost is approximately 33% to 46% of pixel streaming at different super-resolution rates.

H. Long and Y. Yang—Both authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. AMD: AMD fidelityFX super resolution (2023). https://www.amd.com/en/technologies/fidelityfx-super-resolution

  2. Bauszat, P., Eisemann, M., Magnor, M.: Guided image filtering for interactive high-quality global illumination. In: Computer Graphics Forum, vol. 30, pp. 1361–1368. Wiley Online Library (2011)

    Google Scholar 

  3. Bugeja, K., Debattista, K., Spina, S.: An asynchronous method for cloud-based rendering. Vis. Comput. 35, 1827–1840 (2019)

    Article  Google Scholar 

  4. Caballero, J., et al.: Real-time video super-resolution with spatio-temporal networks and motion compensation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4778–4787 (2017)

    Google Scholar 

  5. Crassin, C., et al.: CloudLight: a system for amortizing indirect lighting in real-time rendering. J. Comput. Graph. Tech. 4(4), 1–27 (2015)

    Google Scholar 

  6. Dammertz, H., Sewtz, D., Hanika, J., Lensch, H.P.: Edge-avoiding A-Trous wavelet transform for fast global illumination filtering. In: Proceedings of the Conference on High Performance Graphics, pp. 67–75 (2010)

    Google Scholar 

  7. Guo, J., et al.: ExtraNet: real-time extrapolated rendering for low-latency temporal supersampling. ACM Trans. Graph. (TOG) 40(6), 1–16 (2021)

    Google Scholar 

  8. Hladky, J., Seidel, H.P., Steinberger, M.: Tessellated shading streaming. In: Computer Graphics Forum, vol. 38, pp. 171–182. Wiley Online Library (2019)

    Google Scholar 

  9. Hladky, J., Stengel, M., Vining, N., Kerbl, B., Seidel, H.P.: QuadStream: a quad-based scene streaming architecture for novel viewpoint reconstruction. ACM Trans. Graph. (TOG) 41, C32 (2022)

    Article  Google Scholar 

  10. Kaplanyan, A.: Cryengine 3: Reaching the speed of light. Talk, SIGGRAPH (2010)

    Google Scholar 

  11. Laghari, A.A., He, H., Memon, K.A., Laghari, R.A., Halepoto, I.A., Khan, A.: Quality of experience (QoE) in cloud gaming models: a review. Multiagent Grid Syst. 15(3), 289–304 (2019)

    Article  Google Scholar 

  12. Liu, C., Ooi, W.T., Jia, J., Zhao, L.: Cloud baking: collaborative scene illumination for dynamic Web3D scenes. ACM Trans. Multimedia Comput. Commun. Appl. (TOMM) 14(3s), 1–20 (2018)

    Google Scholar 

  13. Liu, C., et al.: Web-cloud collaborative mobile online 3D rendering system. Secur. Commun. Netw. 2022 (2022)

    Google Scholar 

  14. Magro, M., Bugeja, K., Spina, S., Debattista, K.: Cloud-based dynamic GI for shared VR experiences. IEEE Comput. Graph. Appl. 40(5), 10–25 (2020)

    Article  Google Scholar 

  15. Mansouri, J.E.E.: Rendering ‘rainbow six \(|\) siege’. Website (2016). https://www.gdcvault.com/play/1022990/Rendering-Rainbow-Six-Siege GDC

  16. Mueller, J.H., et al.: Shading atlas streaming. ACM Trans. Graph. (TOG) 37(6), 1–16 (2018)

    Article  Google Scholar 

  17. Myszkowski, K., Tawara, T., Akamine, H., Seidel, H.P.: Perception-guided global illumination solution for animation rendering. In: Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, pp. 221–230 (2001)

    Google Scholar 

  18. Nehab, D., Sander, P.V., Lawrence, J., Tatarchuk, N., Isidoro, J.R.: Accelerating real-time shading with reverse reprojection caching. In: Graphics Hardware, vol. 41, pp. 61–62 (2007)

    Google Scholar 

  19. NVIDIA: GeForce NOW. Website (2023). https://www.nvidia.com/en-us/geforce-now/

  20. NVIDIA: NVIDIA DLSS. Website (2023). https://www.nvidia.com/en-us/geforce/technologies/dlss/

  21. Peñaherrera-Pulla, O.S., Baena, C., Fortes, S., Baena, E., Barco, R.: Measuring key quality indicators in cloud gaming: framework and assessment over wireless networks. Sensors 21(4), 1387 (2021)

    Article  Google Scholar 

  22. Perkis, A., et al.: QUALINET white paper on definitions of immersive media experience (IMEx). arXiv:2007.07032 (2020)

  23. Schied, C., et al.: Spatiotemporal variance-guided filtering: real-time reconstruction for path-traced global illumination. In: Proceedings of High Performance Graphics, pp. 1–12 (2017)

    Google Scholar 

  24. Schied, C., Peters, C., Dachsbacher, C.: Gradient estimation for real-time adaptive temporal filtering. Proc. ACM Comput. Graph. Interact. Tech. 1(2), 1–16 (2018)

    Article  Google Scholar 

  25. Shao, W., Liu, C., Jia, J.: Lightmap-based GI collaborative rendering system for Web3D application. J. Syst. Simul. 32(4), 649 (2020)

    Google Scholar 

  26. Shea, R., Liu, J., Ngai, E.C.H., Cui, Y.: Cloud gaming: architecture and performance. IEEE Netw. 27(4), 16–21 (2013)

    Article  Google Scholar 

  27. SONY: PlayStation Now. Website (2023). https://www.playstation.com/en-us/ps-now/

  28. Stengel, M., Majercik, Z., Boudaoud, B., McGuire, M.: A distributed, decoupled system for losslessly streaming dynamic light probes to thin clients. In: Proceedings of the 12th ACM Multimedia Systems Conference, pp. 159–172 (2021)

    Google Scholar 

  29. Walter, B., Drettakis, G., Parker, S.: Interactive rendering using the render cache. In: Lischinski, D., Larson, G.W. (eds.) EGSR 1999. E, pp. 19–30. Springer, Vienna (1999). https://doi.org/10.1007/978-3-7091-6809-7_3

    Chapter  Google Scholar 

  30. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  31. Wihlidal, G.: 4K checkerboard in ‘battlefield 1’ and ‘mass effect andromeda’. Website (2017). https://www.gdcvault.com/play/1022990/Rendering-Rainbow-Six-Siege GDC

  32. Xiao, L., Nouri, S., Chapman, M., Fix, A., Lanman, D., Kaplanyan, A.: Neural supersampling for real-time rendering. ACM Trans. Graph. (TOG) 39(4), 142:1 (2020)

    Article  Google Scholar 

  33. Zhan, Z., et al.: Achieving on-mobile real-time super-resolution with neural architecture and pruning search. In: Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 4821–4831 (2021)

    Google Scholar 

  34. Zhang, X., Zeng, H., Zhang, L.: Edge-oriented convolution block for real-time super resolution on mobile devices. In: Proceedings of the 29th ACM International Conference on Multimedia, pp. 4034–4043 (2021)

    Google Scholar 

Download references

Acknowledgements

This research is partially supported by the Basic Grant of Natural Science Foundation of China (No. 62072339), the Key Project of Regional Joint Grant of Science Natural Foundation of China (No. U19A2063) and a grant from the National Natural Science Foundation of China (No. 62262043).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huzhiyuan Long .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Long, H., Yang, Y., Liu, C., Jia, J. (2024). SRSSIS: Super-Resolution Screen Space Irradiance Sampling for Lightweight Collaborative Web3D Rendering Architecture. In: Hu, SM., Cai, Y., Rosin, P. (eds) Computer-Aided Design and Computer Graphics. CADGraphics 2023. Lecture Notes in Computer Science, vol 14250. Springer, Singapore. https://doi.org/10.1007/978-981-99-9666-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-99-9666-7_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-99-9665-0

  • Online ISBN: 978-981-99-9666-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics