Abstract
Elementary school children are often unclear which operations to use when tackling mathematical problems of the “open sentence” kind (e.g. 3+*=7). We give details of (a) some of their “impasse-repair” and other problem-solving strategies; (b) computer models of knowledge and misconceptions underlying those strategies; and (c) a CAI program which can identify strategies and remedy gaps in knowledge and misconceptions. Tests of that program with second graders in five schools over six weeks indicate that one third profited significantly. The results are further discussed.
1. Jacobijn A. C. Sandberg, is now at the Department of Social Science Informatics, University of Amsterdam, The Netherlands.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Brown, J. S. and Burton, R. B. (1978). Diagnostic models for procedural bugs in basic mathematical skills. Cognitive Science, 2, 155–192.
Brown, J. S. and Van, Lehn, K. (1982). Towardsa generative theory of “bugs”. In T. P., Carpenter, J. M., Moser and T. A., Romberg (Eds.). Addtion and Subtraction, pp. 117–135. Hillsdale, N.J.: Lawrence Erlbaum Associates.
Brown, A. L. and Campione, J. C. (1981). Introducing flexible thinking: a problem of access. In H., Friedman, J.P., Das and N., O'Connor (Eds.), Intelligence and learing. New York: Plenum.
De, Corte, E. and Verschaffel, L. (1979). Het oplossen van aanvankelijke rekenopgaven bij 6 a 8 jarige basisschool-leerlingen: kwalitatieve analyse en systematische beinvloeding. Rapport nr. 18. Leuven: Katholieke Universiteit Leuven.
De, Corte, E. and Verschaffel, L. 1980. Kwalitatief psychologische analyse van aanvankelijke rekenopgaven bij 6-a 8-jarige basis-schoolleerlingen. Pedagogische Studiën, 57, 383–396.
Gelman, R. and Gallistel, C. R. (1978). The child's understanding of number. Cambridge, MA.: Harvard University Press.
Jansweijer, W.N.H., Elshout, J.J. and Wielinga, B. J. (1986). The expertise of novice problem solvers. Paper presented at the 7th European Conference on Artificial Intelligence.
Lindvall, C. M. and Ibarra, C. G. (1980). Incorrect procedures used by primary grade pupils in solving open addition and subtraction sentences. Journal for Research in Mathematics Education, 11(1), 50–62.
Sleeman, D. and Brown, J. S. (1982). Intelligent tutoring systems. London: Academic Press.
Stevens, A., Collins, A. and Goldin, S. E. (1982). Misconceptions in student's understanding. In D., Sleeman and J. S., Brown (Eds.), Intelligent tutoring systems, pp. 13–24. London: Academic Press.
Van, Lehn, K. (1983). On the representation of procedures in Repair Theory. In H., Ginsburg (Ed.), The development of mathematical thinking, pp. 197–252. New York: Academic Press.
Wielinga, B. J. (1985). Kennisgebaseerde systemen ten behoeve van het onderwijs. In J., Heene and T., Plomp (Eds.), Onderwijs en informatietechnologie. Den Haag: Stichting voor onderzoek van het onderwijs.
Author information
Authors and Affiliations
Additional information
Note
Rights and permissions
About this article
Cite this article
Barnard, Y.F., Sandberg, J.A.C. Applying artificial intelligence insights in a CAI program for “open sentence” mathematical problems in primary schools. Instr Sci 17, 263–276 (1988). https://doi.org/10.1007/BF00048345
Issue Date:
DOI: https://doi.org/10.1007/BF00048345