Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Topographical maps of orientation specificity

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

A spatially congruent framework for orientation encoding in the primate striate visual cortex is proposed and discussed. This framework, which is based on the foot-of-normal representation of straight lines, not only provides a reasonable explanation for the centric organization of the orientation specificity in the primate striate visual cortex but also accounts for a series of experimentally verified intriguing phenomena such as the lack of orientation specificity around the centres of the orientation modules (i.e. the singularities), the increased neural activity at these same places, and the relatively uniform distribution of the singularities along the ocular dominance columns. The proposed framework can also explain and predict the possible existence of centric modules in other cortical regions containing topographical maps of two-dimensional sensory spaces (e.g. pre-striate and somatic sensory cortex). A simple one-layer neural model of the basic centric module in the framework is presented, and simulation results are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Ballard CH, Hinton GE, Sejnowski TJ (1983) Parallel visual computation. Nature 306:21–26

    Article  PubMed  Google Scholar 

  • Baxter WT, Dow BM (1989) Horizontal organization of orientation-sensitive cells in primate visual cortex. Biol Cybern 61:171–182

    Article  PubMed  Google Scholar 

  • Bauer R, Dow BM (1989) Complementary global maps for orientation coding in upper and lower layers of the monkey's foveal striate cortex. Exp Brain Res 76:503–509

    Article  PubMed  Google Scholar 

  • Bauer R, Dow BM (1991) Local and global principles of striate cortical organization: an advanced model. Biol Cybern 64:477–483

    Article  PubMed  Google Scholar 

  • Blakemore C (1991) Understanding images in the brain. In: Blakemore C, Barlow H, Weston-Smith M (eds) Image and understanding. Cambridge University Press Cambridge, Mass., pp 257–283

    Google Scholar 

  • Blakemore C, Cooper GF (1970) Development of the brain depends on the visual environment. Nature 228:477–478

    Article  PubMed  Google Scholar 

  • Blasdel G (1992a) Differential imaging of ocular dominance and orientation selectivity in monkey striate cortex. J Neurosci 12:3115–3138

    PubMed  Google Scholar 

  • Blasdel G (1992b) Orientation selectivity, preference, and continuity in monkey striate cortex. J Neurosci 12:3139–3161

    PubMed  Google Scholar 

  • Blasdel G, Lund JS (1983) Termination of afferent axons in macaque striate cortex. J Neurosci 3:1389–1413

    PubMed  Google Scholar 

  • Blasdel G, Salama G (1986) Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321:579–585

    Article  PubMed  Google Scholar 

  • Bonhoeffer T, Grinvald A (1991) Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature 353:429–431

    Article  PubMed  Google Scholar 

  • Braitenberg V (1985) An isotropic network which implicitly defines orientation columns: discussion of a hypothesis. In: Rose D, Dobson V (eds) Models of the visual cortex. Wiley, New York, pp 479–484

    Google Scholar 

  • Braitenberg V, Braitenberg C (1979) Geometry of orientation columns in the visual cortex. Biol Cybern 33:179–186

    Article  PubMed  Google Scholar 

  • Caelli T, Nagendran S (1987) Fast edge-only matching techniques for robot pattern recognition. Comp Vis Gr Imag Proc 39:131–143

    Google Scholar 

  • Chapman B, Zahls KR, Stryker MP (1991) Relation of cortical cell orientation selectivity to alignment of receptive fields of the geniculocortical afferents that arborize within a single orientation column in ferret visual cortex. J Neurosci 11:1347–1358

    PubMed  Google Scholar 

  • Costa LF (1992) Effective detection of line segments with Hough transform. PhD Thesis, King's College, University of London

  • Costa LF, Sandler MB (1993) Effective detection of digital bar segments with Hough transform. Comp Vis Gr Image Proc Gr Mod and Image Proc 55:180–191

    Google Scholar 

  • Daniel PM, Whitteridge D (1961) The representation of the visual field on the cerebral cortex of monkeys. J Physiol 159:203–221

    Google Scholar 

  • Davies ER (1986) Image space transforms for detecting straight edges in industrial images. Patt Recogn Lett 4:185–192

    Article  Google Scholar 

  • Durbin R, Mitchison G (1990) A dimension reduction framework for understanding cortical maps. Nature 343:644–647

    Article  PubMed  Google Scholar 

  • Freeman H (1974) Computer processing of line-drawing images. Comput Surveys 6:57–97

    Article  Google Scholar 

  • Hartmann G (1987) Recognition of hierarchically encoded images by technical and biological systems. Biol Cybern 57:73–84

    Article  PubMed  Google Scholar 

  • Hendrickson AE, Hunt SP, Wu JY (1981) Immunocytochemical localization of glutamic acid decarboxylase in monkey striate cortex. Nature 292:605–607

    Article  PubMed  Google Scholar 

  • Hirsch HVB, Spinelli DN (1971) Modification of the distribution of receptive field orientations in cats by selective visual exposure during development. Exp Brain Res 12:509–527

    Article  PubMed  Google Scholar 

  • Horton JC, Hubel DH (1981) Regular patchy distribution of cytochrome oxidase staining in primary visual cortex of macaque monkey. Nature 292:762–764

    Article  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN (1962) Receptive fields, binocular interaction, and functional architecture in the cat's visual cortex. J Physiol (Lond) 160:106–154

    Google Scholar 

  • Hubel DH, Wiesel TN (1977) Functional architecture of macaque monkey visual cortex. Proc R Soc Lond [Biol] 198:1–59

    Google Scholar 

  • Hummel R, Moniot R (1989) Reconstructions from zero crossings in scale space. IEEE Trans Acoust Speech Signal Proc 12:2111–2130

    Article  Google Scholar 

  • Kammen DM, Yuille AL (1988) Spontaneous symmetry breaking energy functions and the emergence of orientation selective cortical cells. Biol Cybern 59:23–31

    Article  PubMed  Google Scholar 

  • Linsker R (1986) From basic network principles to neural architecture: emergence of orientation columns. Proc Natl Acad Sci USA 83:8779–8783

    PubMed  Google Scholar 

  • Livingstone M, Hubel DH (1984) Anatomy and physiology of a color system in the primate visual cortex. J Neurosci 4:309–356

    PubMed  Google Scholar 

  • Livingstone M, Hubel DH (1988) Segregation of form, color, movement, and depth: anatomy, phyisology and perception, Science 240:740–749

    PubMed  Google Scholar 

  • Li H, Lavin MA, LeMaster RJ (1986) Fast Hough transform: a hierarchical approach. Comp Vis Gr Imag Proc 36:139–161

    Article  Google Scholar 

  • Marr D (1982) Vision. WH Freeman, San Francisco

    Google Scholar 

  • Obermayer K, Blasdel G (1993) Geometry or orientation and ocular dominance columns in monkey striate cortex. J Neurosci (in press)

  • Obermayer K, Blasdel GG, Schulten K (1990) Statistical-mechanical analysis of self-organization and pattern formation during the development of visual maps. Phys Rev A 45:7568–7589

    Article  Google Scholar 

  • Princen J, Illingworth J, Kittler J (1990) A hierarchical approach to line extraction based on the Hough transform. Comp Vis Gr Imag Proc 52:57–77

    Google Scholar 

  • Rojer AS, Schwartz EL (1990) Cat and monkey cortical columnar patterns modeled by bandpass-filteers 2D white noise. Biol Cybern 62:381–391

    Article  PubMed  Google Scholar 

  • Ruff PI, Rauschecker P, Palm G (1987) A model of direction-selective simple cells in the visual cortex based on inhibition asymmetry. Biol Cybern 57:147–157

    Article  PubMed  Google Scholar 

  • Schein SJ, Monasterio FMD (1987) Mapping of retinal and geniculate neurons onto striate cortex of macaque. J Neurosci 7:996–1009

    PubMed  Google Scholar 

  • Seelen W Van (1970) Informationsverarbeitung im visuellen System der Wilbertiere. II. Kybernetik 7:89–106

    Article  PubMed  Google Scholar 

  • Sklanski J (1978) On the Hough transform for curve detection. IEEE Trans Comput C 27:623–626

    Google Scholar 

  • Swindale NV (1992) A model for the coordinated development of columnar system in primate striate cortex. Biol Cybern 66:217–230

    Article  PubMed  Google Scholar 

  • Wong-Riley M (1979) Columnar cortico-cortical interactions within the visual system of the squirrel and macaque monkeys. Brain Res 162:201–217

    Article  PubMed  Google Scholar 

  • Zeki S, Shipp S (1988) The functional logic of cortical connections. Nature 335:311–317

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

da Fontoura Costa, L. Topographical maps of orientation specificity. Biol. Cybern. 71, 537–546 (1994). https://doi.org/10.1007/BF00198472

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00198472

Keywords