Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Wide-field motion-sensitive neurons tuned to horizontal movement in the honeybee, Apis mellifera

  • Published:
Journal of Comparative Physiology A Aims and scope Submit manuscript

Summary

This paper describes the morphology and response characteristics of two types of paired descending neurons (DNs) (classified as DNVII1 and DNIV1) and two lobula neurons (HR1 and HP1) in the honeybee, Apis mellifera.

  1. 1.

    The terminal arborizations of the lobula neurons are in juxtaposition with the dendritic branches of the DNs (Figs. 2, 3b, 5). Both of the DNs descend into the ipsilateral side of the thoracic ganglia via the dorsal intermediate tract (Fig. 6) and send out many blebbed terminal branches into the surrounding motor neuropil (Figs. 3c, 7).

  2. 2.

    Both the lobula and descending neurons respond in a directionally selective manner to the motion of widefield, periodic square-wave gratings.

  3. 3.

    The neurons have broad directional tuning curves (Figs. 10, 11). HR1 is maximally sensitive to regressive (back-to-front) motion and HP1 is maximally sensitive to progressive (front-to-back) motion over the ipsilateral eye (Fig. 11). DNVII1 is maximally sensitive when there is simultaneous regressive motion over the ipsilateral eye and progressive motion over the contralateral eye (Fig. 12a). Conversely, DNIV1 is optimally stimulated when there is simultaneous progressive motion over the ipsilateral eye and regressive motion over the contralateral eye (Fig. 12b).

  4. 4.

    The response of DNIV1 is shown to depend on the contrast frequency (CF) rather than the angular velocity of the periodic gratings used as stimuli. The peak responses of both regressive and progressive sensitive DNs are shown to occur at CFs of 8–10 Hz (Figs. 13, 14).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

DN :

descending neuron

CF :

contrast frequency (temporal frequency)

λ sp :

spatial wavelength

POT I :

posterior optic tract I

POT II :

posterior optic tract II

References

  • Altman JS, Shaw MK, Tyrer NM (1980) Input synapses on to a locust sensory neuron revealed by cobalt-electron microscopy. Brain Res 189:245–250

    Google Scholar 

  • Bacon JP, Altman JS (1977) A silver intensification method for cobalt-filled neurones in wholemount peparations. Brain Res 138:359–363

    Google Scholar 

  • Buchner E (1984) Behavioral analysis of spatial vision in insects. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum Press, New York London, Series 74, pp 561–622

    Google Scholar 

  • Carpenter RHS (1977) Movements of the eyes. PION Ltd, London

    Google Scholar 

  • Collett TS, King AJ (1975) Vision during flight. In: Horridge GA (ed) The compound eye and vision of insects. Clarendon Press, Oxford, pp 437–466

    Google Scholar 

  • DeVoe RD, Kaiser W, Ohm J, Stowe LS (1982) Horizontal movement detectors of honeybee: Directionally-selective visual neurons in the lobula and brain. J Comp Physiol 147:155–170

    Google Scholar 

  • Egelhaaf M, Hausen K, Reichardt W, Wehrhahn C (1988) Visual course control in flies relies on neuronal computation of object and background motion. Trends Neurosci 11:351–358

    Google Scholar 

  • Fermi G, Reichardt W (1963) Optomotorische Reaktionen der Fliege Musca domestica. Abhängigkeit der Reaktion von der Wellenlänge, der Geschwindigkeit, dem Kontrast und der mittleren Leuchtdichte bewegter periodischer Muster. Kybernetik 2:15–18

    Google Scholar 

  • Florkin M, Jeuniaux C (1964) Haemolymph composition. In: Rockstein M (ed) The physiology of insects. Academic Press, New York, pp 109–152

    Google Scholar 

  • Goodman LJ, Fletcher WA, Guy RG, Mobbs PG, Pomfrett CJD (1987) Motion sensitive descending interneurons, ocellar LD neurons and neck motor neurons in the bee: a neural substrate for visual course control in Apis mellifera. In: Menzel R, Mercer A (eds) Neurobiology and behaviour of honeybees. Springer, Berlin Heidelberg New York, pp 158–171

    Google Scholar 

  • Götz KG, Hengstenberg B, Biesinger R (1979) Optomotor control of wing beat and body posture in Drosophila. Biol Cybern 35:101–112

    Google Scholar 

  • Hausen K (1976) Functional characterization and anatomical identification of motion sensitive neurons in the lobula plate of the blowfly Calliphora erythrocephala. Z Naturforsch 31c:629–633

    Google Scholar 

  • Hausen K (1982) Motion sensitive interneurons in the optomotor system of the fly. II. The horizontal cells: receptive field organization and response characteristics. Biol Cybern 46:67–79

    Google Scholar 

  • Hausen K (1984) The lobula plate complex of the fly: structure, function and significance in visual behavior. In: Ali MA (ed) Photoreception and vision in invertebrates. Plenum Press, New York London, Series 74, pp 523–560

    Google Scholar 

  • Hausen K, Wolburg-Bucholz K, Ribi WA (1980) The synaptic organization of visual interneurons in the lobula complex of flies. A light and electron microscopical study using silver-intensified cobalt-impregnations. Cell Tissue Res 208:371–387

    Google Scholar 

  • Held R, Dichgars J, Bauer J (1975) Characteristics of moving visual scenes in influencing spatial orientation. Vision Res 15:357–365

    Google Scholar 

  • Hensler K (1988) The pars intercerebralis neurone PI(2)5 of locusts: Convergent processing of inputs reporting head movements and deviations from straight flight. J Exp Biol 140:511–533

    Google Scholar 

  • Hertel H, Maronde UK (1987) The physiology and morphology of centrally projecting visual interneurones in the honeybee brain. J Exp Biol 133:301–315

    Google Scholar 

  • Hoffmann KP, Haber HP, Morkner C, Mayr M (1982) The role of central and peripheral retina in eliciting optokinetic nystagmus in cats. In: Roucous A, Crommelinck M (eds) Physiological and pathological aspects of eye movements. Junk, The Hague, pp 181–186

    Google Scholar 

  • Ibbotson MR, Goodman LJ (1990) Response characteristics of four wide-field motion-sensitive descending interneurones in Apis mellifera. J Exp Biol 148:255–279

    Google Scholar 

  • Kaiser W, Bishop LG (1970) Directionally selective motion detecting units in the optic lobe of the honey-bee. Z Vergl Physiol 67:403–413

    Google Scholar 

  • Kunze P (1961) Untersuchung des Bewegungssehens fixiert fliegender Bienen. Z Vergl Physiol 44:656–684

    Google Scholar 

  • Kuo BC (1963) Automatic control systems. Prentice-Hall, New Jersey Tokyo

    Google Scholar 

  • Land MF (1975) Head movements and fly vision. In: Horridge GA (ed) The compound eye and vision in insects. Clarendon Press, Oxford, pp 469–489

    Google Scholar 

  • Maddess T, Laughlin SB (1985) Adaptation of the motion-sensitive neuron H1 is generated locally and governed by contrast frequency. Proc R Soc Lond B 225:251–275

    Google Scholar 

  • Maronde U (1988) Strukturelle und funktionelle Charakterisierung visueller Interneuronen-Populationen im Protocerebrum der Honigbiene Apis mellifera. PhD Thesis Berlin

  • Milde JJ, Strausfeld NJ (1986) Visuo-motor pathways in arthropods. Naturwissenschaften 73:151–154

    Google Scholar 

  • Milde JJ, Seyan HS, Strausfeld NJ (1987) The neck motor system of the fly Calliphora erythrocephala. II. Sensory organization. J Comp Physiol A 160:225–238

    Google Scholar 

  • Milde JJ, Gronenberg W, Strausfeld NJ (1990) The head-neck system of the blowfly Calliphora: functional organization and comparison with the sphinx moth Manduca sexta. In: Berthoz A, Graf W, Vidal PP (eds) Proceedings of the 2nd Headneck Symposium. Oxford Univ Press, Oxford (in press)

    Google Scholar 

  • Mobbs PG (1984) Neural networks in the mushroom bodies. J Insect Physiol 30:43–58

    Google Scholar 

  • Mobbs PG (1985) Brain structure. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology. Pergamon Press, Oxford, pp 299–369

    Google Scholar 

  • Pan KC (1980) The neural organization of the ocellar system and associated pathways in the central nervous system of the worker honeybee. PhD Thesis London

  • Patterson JA, Pomfrett CJD (1988) A BBC microcomputer-based system for the on-line determination of directional selectivity in visual motion-sensitive neurones of the honeybee. J Physiol 399:2P

    Google Scholar 

  • Rehder V (1988) A neuroanatomical map of the suboesophageal and prothoracic ganglia of the honey bee (Apis mellifera). Proc R Soc Lond B 235:179–202

    Google Scholar 

  • Reichert H, Rowell CHF, Griss C (1985) Course correction circuitry translates feature detection into behavioural action in locusts. Nature 31:142–144

    Google Scholar 

  • Rind FC (1983a) A directionally-selective motion detection neuron in the brain of a moth. J Exp Biol 102:253–271

    Google Scholar 

  • Rind FC (1983b) The role of an identified brain neurone in mediating optomotor movements in a moth. J Exp Biol 102:273–284

    Google Scholar 

  • Robert D (1988) Visual steering under closed-loop conditions by flying locusts: flexibility of optomotor response and mechanisms of correctional steering. J Comp Physiol 164:15–24

    Google Scholar 

  • Rowell CHF, Reichert H (1986) Three descending interneurones reporting deviation from course in the locust. II. Physiology. J Comp Physiol A 158:775–794

    Google Scholar 

  • Sandeman D (1977) Compensatory eye movements in crabs. In: Hoyle G (ed) Identified neurons and behavior of arthropods. Plenum, New York London, pp 131–147

    Google Scholar 

  • Simmons PJ (1980) A locust wind and ocellar brain neurone. J Exp Biol 85:281–294

    Google Scholar 

  • Strausfeld NJ (1976) Atlas of an insect brain. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Strausfeld NJ, Bacon JP (1983) Multimodal convergence in the central nervous system of dipterous insects. In: Horn E (ed) Multimodel convergence in sensory systems. Fortschr Zool 28. G Fischer, Stuttgart New York, pp 47–76

    Google Scholar 

  • Strausfeld NJH, Bassemir U (1983) Cobalt coupled neurons of a giant fibre system in Diptera. J Neurocytol 12:971–991

    Google Scholar 

  • Strausfeld NJ, Bassemir U (1985a) Lobula plate and ocellar interneurons converge onto a cluster of descending neurons leading to neck and leg motor neuropile in Calliphora erythrocephala. Cell Tissue Res 240:617–640

    Google Scholar 

  • Strausfeld NJ, Bassemir U (1985b) The organization of giant horizontal-motion-sensitive neurons and their synaptic relationship in the lateral deutocerebrum of Calliphora erythrocephala and Musca domestica. Cell Tissue Res 242:531–550

    Google Scholar 

  • Strausfeld NJ, Seyan HS, Milde JJ (1987) The neck motor system of the fly Calliphora erythrocephala I, II. J Comp Physiol A 160:205–238

    Google Scholar 

  • Watson AHD, Burrows M (1982) The ultrastructure of identified locust motor neurones and their synaptic relationship. J Comp Neurol 205:383–397

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ibbotson, M.R. Wide-field motion-sensitive neurons tuned to horizontal movement in the honeybee, Apis mellifera . J Comp Physiol A 168, 91–102 (1991). https://doi.org/10.1007/BF00217107

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00217107

Key words