Abstract
The nonuniform emission of the solar wind from the sun means that conditions are established which favor the development of discontinuities in the plasma parameters. Since the solar wind is in rapid proper motion with respect to the sun and the earth, examination of these discontinuities requires that the wind velocity be transformed away. Then it is found that they satisfy the conditions of magnetohydrodynamics and can be treated as shock waves and the stationary contact surfaces consisting of either tangential or contact discontinuities. The collision-free structure of the solar wind suggests that the tangential discontinuity is the more likely contact surface as it is more capable of inhibiting diffusion which is required for a lifetime sufficient for the structure to be carried to the neighborhood of the earth.
Either the shock wave or the contact surface can create signals that are detectable at the surface of the earth. The simplest surface signal to detect is the sudden impulse (SI) but other signals may be found. The existence of a field of MHD discontinuities in the solar wind should make possible the generation of ensembles of shocks and contact surfaces. Various possibilities are explored and these are discussed from the standpoint of combinations of sudden impulses at the earth's surface which are both positive and negative. Some of these are recurrent with a 27-day period; the interplanetary M region shock ensemble associated with this is discussed and the development of these structures in space is reviewed.
Lastly observational evidence for interplanetary shock waves is given together with the analytic technique for establishing their geometry and comparing the derived and measured jump parameters. The applicability of the geometrical construction of the general class of MHD discontinuity to their analysis is indicated and shows the way in which the structural content of the solar wind can be classified by the use of magnetometers and plasma probes. A parametric study of the jump conditions through a shock wave can be used to verify the correctness of field measurements because of the redundancy in measurements. This also allows the details of shock structure to be examined including the intrinsic partitioning of the internal energy of the shocked plasma.
Similar content being viewed by others
References
Adlam, J. H. and Allen, J. E.: 1958, Phil. Mag. 3, 448.
Akasofu, S. I.: 1964, Plan. Space Sci. 12, 573.
Anderson, J. E.: 1963, Magnetohydrodynamic Shock Waves, MIT Press, Cambridge, Mass.
Arnoldy, R. L., Hoffman, R. A., and Winckler, J. R.: 1960, J. Geophys. Res. 65, 1862.
Auer, P. L., Hurwitz, H., Jr., and Kilb, R. W.: 1961, Phys. Fluids 4, 1105.
Auer, P. L., Hurwitz, H., Jr., and Kilb, R. W.: 1962, Phys. Fluids 5, 298.
Axford, W. I., Dessler, A. J., and Gottlieb, B.: 1963, Astrophys. J. 137, 1268.
Baños, A. and Vernon, A. R.: 1960, Nuovo Cimento 15, 269.
Bridge, H., Egidi, A., Lazarus, A., Lyon, E., and Jacobson, L.: 1965, Space Res. 5, 969.
Bryant, D. A., Cline, T. L., Desai, U. D., and McDonald, F. B.: 1963, Phys. Rev. Letters 11, 144.
Chew, G. F., Goldberger, M. L., and Low, F. E.: 1956, Proc. Roy. Soc. A236, 112.
Coleman, P. J., Davis, L., Jr., Smith, E. J., and Sonett, C. P.: 1962, Science 138, 1099.
Coleman, P. J., Davis, L., Jr., and Sonett, C. P.: 1960, Phys. Rev. Letters, 5, 43.
Coleman, P. J., Sonett, C. P., and Davis, L., Jr.: 1961, J. Geophys. Res. 66, 2043.
Coleman, P. J., Sonett, C. P., Judge, D. L., and Smith, E. J.: 1960, J. Geophys. Res. 65, 1856.
Colgate, S. A.: 1959, Phys. Fluids 2, 485.
Courant, R. and Friedrichs, K. O.: 1948, Supersonic Flow and Shock Waves, Interscience, New York.
Cowling, T. G.: 1957, Magnetohydrodynamics, Interscience, New York.
Davis, L., Jr.Lüst, R., and Schlüter, A.: 1958, Z.Naturforsch 13a, 916.
Davis, L. Jr., Smith, E. J., Coleman, P. J., and Sonett, C. P.: 1964, Proceedings of the Solar Wind Conference, Pasadena, April, 1964, in The Solar Wind (ed. by R. Mackin and M. Neugebauer), Pergamon Press (in press).
deHoffman, F. and Teller, E.: 1950, Phys. Rev. 80, 692.
Dessler, A. J. and Fejer, J. A.: 1963, Plan. Space Sci. 11, 505.
Dessler, A. J. and Parker, E. N.: 1959, J. Geophys. Res. 64, 2239.
Dessler, A. J. and Vestine, E. H.: 1960, J. Geophys. Res. 65, 1069.
Dungey, J. W.: 1958, Cosmic Electrodynamics, Cambridge Univ. Press.
Dungey, J. W.: 1959, Phil. Mag. 4, 585.
Fan, C. Y., Meyer, P., and Simpson, J. A.: 1960, J. Geophys. Res. 65, 1862.
Fishman, F. J., Kantrowitz, A. R. and Petschek, H. E.: 1960, Rev. Mod. Phys. 32, 959.
Forbush, S. E. and Casaverde, M.: 1961, Equatorial Electrojet in Peru, Carnegie Inst. Publ. 620, Washington, D. C.
Friedman, M. P.: 1960, J. Fluid Mech. 8, part 2, 1931.
Fuller, F. B.: 1961, ‘Numerical Solutions for Supersonic Flow of an Ideal Gas Around Blunt Two-Dimensional Bodies’, NASA TN D-791.
Germain, P.: 1959, ‘Contribution à la théorie des ondes de choc en magnétodynamique des fluides’, Office Nat. d'Etudes et Recherces Aero. Publ. 97.
Gold, T.: 1955, Gasdynamics of Cosmic Clouds (ed. by H. C. van de Hulst and J. M. Burgers), North-Holland Publ. Co.
Gold, T.: 1959, J. Geophys. Res. 64, 1665.
Greenstadt, E. W.: 1961, Nature 191, 329.
Greenstadt, E. W. and Moreton, G. E.: 1962, J. Geophys. Res. 67, 3299.
Gringauz, K. I., Bezrukikh, V. V., Ozerou, V. D., and Rybchinskiy, R. Ye: 1961, Artificial Earth Satellites 6, Moscow.
Helfer, L.: 1953, Astrophys. J. 117, 177.
Hirshberg, J.: 1965, J. Geophys. Res. 70, 5353.
Humphreys, W. J.: 1964, Physics of the Air, Dover Publ.
Imai, I.: 1960, Rev. Mod. Phys. 32, 992.
Ivanov, K. G.: 1965, Geomagnetizm i Aeronomija 5, 471.
Jeffrey, A. and Taniuti, T.: 1964, Non-Linear Wave Propagation, Academic Press.
Jones, W. P. and Rossow, V. J.: 1965, ‘Graphical Results for Large-Amplitude Unsteady Waves in Magnetized Collision-Free Plasmas With Discrete Structure’, NASA TN D-2536.
Kantrowitz, A. R. and Petschek, H. E.: 1964, ‘MHD Characteristics and Shock Waves’, Avco Everett Res. Lab., Rep. 185; to appear in Plasma Physics, Theory and Application (ed. by W. Kun- kel), McGraw-Hill (in press).
Landau, L. D. and Lifshitz, E. M.: 1959, Fluid Mechanics, Pergamon Press, Addison-Wesley Publ. Co.
Liepman, N. H. W. and Cole, J. D.: 1960, ‘Continuum Plasma Dynamics’ in Symposium on Plasma Dynamics (ed. by F. Clauser), Addison-Wesley Publ. Co., Ch. 6.
Maer, K. Jr. and Dessler, A. J.: 1964, J. Geophys. Res. 69, 2846.
Marshall, W.: 1955, Proc. Roy. Soc. A233, 367.
Morawetz, C. S.: 1961, Phys. Fluids 4, 988.
Mustel, E.: 1964, Space Sci. Rev. 3, 139.
Ness, N. F., Scearce, C. S. and Seek, J. B.: 1964, J. Geophys. Res. 69, 3531.
Ness, N. F. and Wilcox, J. M.: 1965, Science 148, 1592.
Neugebauer, M. and Snyder, C. W.: 1964, Proceedings of the Solar Wind Conference, Pasadena, April 1964, in The Solar Wind (ed. by R. Mackin and M. Neugebauer), Pergamon Press (in press).
Nishida, A.: 1964, Rpt. Ionosphere and Space Res. (Japan) 18, 295.
Nishida, A. and Cahill, L. J.: 1964, J. Geophys. Res. 69, 2243.
Noble, L. M. and Scarf, F. L.: 1963, Astrophys. J. 138, 1169.
Ondoh, T.: 1963, J. Geomag. and Geoelec. 14, 198.
Parker, E. N.: 1957, J. Geophys. Res. 62, 509.
Parker, E. N.: 1958, Astrophys. J. 128, 664.
Parker, E. N.: 1960, Astrophys. J. 132, 821.
Parker, E. N.: 1961, Astrophys. J. 133, 1014.
Parker, E. N.: 1963, Interplanetary Dynamical Processes, Interscience, New York.
Priester, W. and Cattani, D.: 1962, J. Atmos. Sci. 19, 121.
Petschek, H. E.: 1958, Rev. Mod. Phys. 30, 966.
Razdan, H., Colburn, D. S., and Sonett, C. P.: 1965, Plan. Space Sci. 13, 1111.
Ribner, H. S.: 1957, J. Acoustical Soc. Amer. 29, 435.
Rogers, M. H.: 1957, Astrophys. J. 125, 478.
Saito, T.: 1964, J. Geomag. and Geoelec. 16, 115.
Sarabhai, V.: 1963, J. Geophys. Res. 68, 1555.
Shercliff, J. A.: 1960, J. Fluid Mech. 9, 481.
Simon, M. and Axford, W. I.: 1966, ‘Shock Waves in the Interplanetary Medium’, Cornell-Sydney University Astronomy Center, Ithaca, Rep. CSUAC 38.
Sinno, K.: 1956, Rpt. Ionosphere Res. (Japan) 10, 250.
Snyder, C. W. and Neugebauer, M.: 1964, Space Res. 4, 89.
Snyder, C. W., Neugebauer, M. and Rao, U. R.: 1963, J. Geophys. Res. 68, 6361.
Sonett, C. P.: 1960, Phys. Rev. Letter 5, 46.
Sonett, C. P.: 1963, J. Geophys. Res. 68, 1265.
Sonett, C. P.: 1963, Space Sci. Rev. 2, 751.
Sonett, C. P. and Colburn, D. S.: 1965, Plan. Space Sci. 13, 675.
Sonett, C. P., Colburn, D. S., Davis, L., Jr., Smith, E. J., and Coleman, P. J.: 1964, Phys. Rev. Letters 13, 153.
Sonett, C. P., Davis, L., Jr., and Coleman, P. J.: 1962, J. Phys. Soc. Japan 17, Suppl. II-A, 524.
Spitzer, L.: 1956, Physics of Fully Ionized Gases, Interscience, New York.
Spreiter, J. R., Summers, A. L., and Alksne, A. Y.: 1966, Plan. Space Sci. (in press).
Störmer, C.: dy1955, The Polar Aurora, Oxford Press.
Sturrock, P. and Spreiter, J. R.: 1965, J. Geophys. Res. 70, 5345.
Thompson, W. B.: 1962, An Introduction to Plasma Physics, Pergamon Press, New York.
Wolfe, J. H. and Silva, R. W.: 1965, J. Geophys. Res. 70, 3575.
Wolfe, J. H., Silva, R. W., and Myers, M. H.: 1965, ‘Observations of the Solar Wind-Geomagnetic Field Interaction Region on IMP II and OGO I’, in Proc. of the Sixth COSPAR Symposium, Mar Del Plata, Argentina.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Colburn, D.S., Sonett, C.P. Discontinuities in the solar wind. Space Sci Rev 5, 439–506 (1966). https://doi.org/10.1007/BF00240575
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF00240575