Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Advertisement

Discontinuities in the solar wind

  • Published:
Space Science Reviews Aims and scope Submit manuscript

Abstract

The nonuniform emission of the solar wind from the sun means that conditions are established which favor the development of discontinuities in the plasma parameters. Since the solar wind is in rapid proper motion with respect to the sun and the earth, examination of these discontinuities requires that the wind velocity be transformed away. Then it is found that they satisfy the conditions of magnetohydrodynamics and can be treated as shock waves and the stationary contact surfaces consisting of either tangential or contact discontinuities. The collision-free structure of the solar wind suggests that the tangential discontinuity is the more likely contact surface as it is more capable of inhibiting diffusion which is required for a lifetime sufficient for the structure to be carried to the neighborhood of the earth.

Either the shock wave or the contact surface can create signals that are detectable at the surface of the earth. The simplest surface signal to detect is the sudden impulse (SI) but other signals may be found. The existence of a field of MHD discontinuities in the solar wind should make possible the generation of ensembles of shocks and contact surfaces. Various possibilities are explored and these are discussed from the standpoint of combinations of sudden impulses at the earth's surface which are both positive and negative. Some of these are recurrent with a 27-day period; the interplanetary M region shock ensemble associated with this is discussed and the development of these structures in space is reviewed.

Lastly observational evidence for interplanetary shock waves is given together with the analytic technique for establishing their geometry and comparing the derived and measured jump parameters. The applicability of the geometrical construction of the general class of MHD discontinuity to their analysis is indicated and shows the way in which the structural content of the solar wind can be classified by the use of magnetometers and plasma probes. A parametric study of the jump conditions through a shock wave can be used to verify the correctness of field measurements because of the redundancy in measurements. This also allows the details of shock structure to be examined including the intrinsic partitioning of the internal energy of the shocked plasma.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adlam, J. H. and Allen, J. E.: 1958, Phil. Mag. 3, 448.

    Google Scholar 

  • Akasofu, S. I.: 1964, Plan. Space Sci. 12, 573.

    Google Scholar 

  • Anderson, J. E.: 1963, Magnetohydrodynamic Shock Waves, MIT Press, Cambridge, Mass.

    Google Scholar 

  • Arnoldy, R. L., Hoffman, R. A., and Winckler, J. R.: 1960, J. Geophys. Res. 65, 1862.

    Google Scholar 

  • Auer, P. L., Hurwitz, H., Jr., and Kilb, R. W.: 1961, Phys. Fluids 4, 1105.

    Google Scholar 

  • Auer, P. L., Hurwitz, H., Jr., and Kilb, R. W.: 1962, Phys. Fluids 5, 298.

    Google Scholar 

  • Axford, W. I., Dessler, A. J., and Gottlieb, B.: 1963, Astrophys. J. 137, 1268.

    Google Scholar 

  • Baños, A. and Vernon, A. R.: 1960, Nuovo Cimento 15, 269.

    Google Scholar 

  • Bridge, H., Egidi, A., Lazarus, A., Lyon, E., and Jacobson, L.: 1965, Space Res. 5, 969.

    Google Scholar 

  • Bryant, D. A., Cline, T. L., Desai, U. D., and McDonald, F. B.: 1963, Phys. Rev. Letters 11, 144.

    Google Scholar 

  • Chew, G. F., Goldberger, M. L., and Low, F. E.: 1956, Proc. Roy. Soc. A236, 112.

    Google Scholar 

  • Coleman, P. J., Davis, L., Jr., Smith, E. J., and Sonett, C. P.: 1962, Science 138, 1099.

    Google Scholar 

  • Coleman, P. J., Davis, L., Jr., and Sonett, C. P.: 1960, Phys. Rev. Letters, 5, 43.

    Google Scholar 

  • Coleman, P. J., Sonett, C. P., and Davis, L., Jr.: 1961, J. Geophys. Res. 66, 2043.

    Google Scholar 

  • Coleman, P. J., Sonett, C. P., Judge, D. L., and Smith, E. J.: 1960, J. Geophys. Res. 65, 1856.

    Google Scholar 

  • Colgate, S. A.: 1959, Phys. Fluids 2, 485.

    Google Scholar 

  • Courant, R. and Friedrichs, K. O.: 1948, Supersonic Flow and Shock Waves, Interscience, New York.

    Google Scholar 

  • Cowling, T. G.: 1957, Magnetohydrodynamics, Interscience, New York.

    Google Scholar 

  • Davis, L., Jr.Lüst, R., and Schlüter, A.: 1958, Z.Naturforsch 13a, 916.

    Google Scholar 

  • Davis, L. Jr., Smith, E. J., Coleman, P. J., and Sonett, C. P.: 1964, Proceedings of the Solar Wind Conference, Pasadena, April, 1964, in The Solar Wind (ed. by R. Mackin and M. Neugebauer), Pergamon Press (in press).

  • deHoffman, F. and Teller, E.: 1950, Phys. Rev. 80, 692.

    Google Scholar 

  • Dessler, A. J. and Fejer, J. A.: 1963, Plan. Space Sci. 11, 505.

    Google Scholar 

  • Dessler, A. J. and Parker, E. N.: 1959, J. Geophys. Res. 64, 2239.

    Google Scholar 

  • Dessler, A. J. and Vestine, E. H.: 1960, J. Geophys. Res. 65, 1069.

    Google Scholar 

  • Dungey, J. W.: 1958, Cosmic Electrodynamics, Cambridge Univ. Press.

  • Dungey, J. W.: 1959, Phil. Mag. 4, 585.

    Google Scholar 

  • Fan, C. Y., Meyer, P., and Simpson, J. A.: 1960, J. Geophys. Res. 65, 1862.

    Google Scholar 

  • Fishman, F. J., Kantrowitz, A. R. and Petschek, H. E.: 1960, Rev. Mod. Phys. 32, 959.

    Google Scholar 

  • Forbush, S. E. and Casaverde, M.: 1961, Equatorial Electrojet in Peru, Carnegie Inst. Publ. 620, Washington, D. C.

  • Friedman, M. P.: 1960, J. Fluid Mech. 8, part 2, 1931.

    Google Scholar 

  • Fuller, F. B.: 1961, ‘Numerical Solutions for Supersonic Flow of an Ideal Gas Around Blunt Two-Dimensional Bodies’, NASA TN D-791.

  • Germain, P.: 1959, ‘Contribution à la théorie des ondes de choc en magnétodynamique des fluides’, Office Nat. d'Etudes et Recherces Aero. Publ. 97.

  • Gold, T.: 1955, Gasdynamics of Cosmic Clouds (ed. by H. C. van de Hulst and J. M. Burgers), North-Holland Publ. Co.

  • Gold, T.: 1959, J. Geophys. Res. 64, 1665.

    Google Scholar 

  • Greenstadt, E. W.: 1961, Nature 191, 329.

    Google Scholar 

  • Greenstadt, E. W. and Moreton, G. E.: 1962, J. Geophys. Res. 67, 3299.

    Google Scholar 

  • Gringauz, K. I., Bezrukikh, V. V., Ozerou, V. D., and Rybchinskiy, R. Ye: 1961, Artificial Earth Satellites 6, Moscow.

  • Helfer, L.: 1953, Astrophys. J. 117, 177.

    Google Scholar 

  • Hirshberg, J.: 1965, J. Geophys. Res. 70, 5353.

    Google Scholar 

  • Humphreys, W. J.: 1964, Physics of the Air, Dover Publ.

  • Imai, I.: 1960, Rev. Mod. Phys. 32, 992.

    Google Scholar 

  • Ivanov, K. G.: 1965, Geomagnetizm i Aeronomija 5, 471.

    Google Scholar 

  • Jeffrey, A. and Taniuti, T.: 1964, Non-Linear Wave Propagation, Academic Press.

  • Jones, W. P. and Rossow, V. J.: 1965, ‘Graphical Results for Large-Amplitude Unsteady Waves in Magnetized Collision-Free Plasmas With Discrete Structure’, NASA TN D-2536.

  • Kantrowitz, A. R. and Petschek, H. E.: 1964, ‘MHD Characteristics and Shock Waves’, Avco Everett Res. Lab., Rep. 185; to appear in Plasma Physics, Theory and Application (ed. by W. Kun- kel), McGraw-Hill (in press).

  • Landau, L. D. and Lifshitz, E. M.: 1959, Fluid Mechanics, Pergamon Press, Addison-Wesley Publ. Co.

  • Liepman, N. H. W. and Cole, J. D.: 1960, ‘Continuum Plasma Dynamics’ in Symposium on Plasma Dynamics (ed. by F. Clauser), Addison-Wesley Publ. Co., Ch. 6.

  • Maer, K. Jr. and Dessler, A. J.: 1964, J. Geophys. Res. 69, 2846.

    Google Scholar 

  • Marshall, W.: 1955, Proc. Roy. Soc. A233, 367.

    Google Scholar 

  • Morawetz, C. S.: 1961, Phys. Fluids 4, 988.

    Google Scholar 

  • Mustel, E.: 1964, Space Sci. Rev. 3, 139.

    Google Scholar 

  • Ness, N. F., Scearce, C. S. and Seek, J. B.: 1964, J. Geophys. Res. 69, 3531.

    Google Scholar 

  • Ness, N. F. and Wilcox, J. M.: 1965, Science 148, 1592.

    Google Scholar 

  • Neugebauer, M. and Snyder, C. W.: 1964, Proceedings of the Solar Wind Conference, Pasadena, April 1964, in The Solar Wind (ed. by R. Mackin and M. Neugebauer), Pergamon Press (in press).

  • Nishida, A.: 1964, Rpt. Ionosphere and Space Res. (Japan) 18, 295.

    Google Scholar 

  • Nishida, A. and Cahill, L. J.: 1964, J. Geophys. Res. 69, 2243.

    Google Scholar 

  • Noble, L. M. and Scarf, F. L.: 1963, Astrophys. J. 138, 1169.

    Google Scholar 

  • Ondoh, T.: 1963, J. Geomag. and Geoelec. 14, 198.

    Google Scholar 

  • Parker, E. N.: 1957, J. Geophys. Res. 62, 509.

    Google Scholar 

  • Parker, E. N.: 1958, Astrophys. J. 128, 664.

    Google Scholar 

  • Parker, E. N.: 1960, Astrophys. J. 132, 821.

    Google Scholar 

  • Parker, E. N.: 1961, Astrophys. J. 133, 1014.

    Google Scholar 

  • Parker, E. N.: 1963, Interplanetary Dynamical Processes, Interscience, New York.

    Google Scholar 

  • Priester, W. and Cattani, D.: 1962, J. Atmos. Sci. 19, 121.

    Google Scholar 

  • Petschek, H. E.: 1958, Rev. Mod. Phys. 30, 966.

    Google Scholar 

  • Razdan, H., Colburn, D. S., and Sonett, C. P.: 1965, Plan. Space Sci. 13, 1111.

    Google Scholar 

  • Ribner, H. S.: 1957, J. Acoustical Soc. Amer. 29, 435.

    Google Scholar 

  • Rogers, M. H.: 1957, Astrophys. J. 125, 478.

    Google Scholar 

  • Saito, T.: 1964, J. Geomag. and Geoelec. 16, 115.

    Google Scholar 

  • Sarabhai, V.: 1963, J. Geophys. Res. 68, 1555.

    Google Scholar 

  • Shercliff, J. A.: 1960, J. Fluid Mech. 9, 481.

    Google Scholar 

  • Simon, M. and Axford, W. I.: 1966, ‘Shock Waves in the Interplanetary Medium’, Cornell-Sydney University Astronomy Center, Ithaca, Rep. CSUAC 38.

  • Sinno, K.: 1956, Rpt. Ionosphere Res. (Japan) 10, 250.

    Google Scholar 

  • Snyder, C. W. and Neugebauer, M.: 1964, Space Res. 4, 89.

    Google Scholar 

  • Snyder, C. W., Neugebauer, M. and Rao, U. R.: 1963, J. Geophys. Res. 68, 6361.

    Google Scholar 

  • Sonett, C. P.: 1960, Phys. Rev. Letter 5, 46.

    Google Scholar 

  • Sonett, C. P.: 1963, J. Geophys. Res. 68, 1265.

    Google Scholar 

  • Sonett, C. P.: 1963, Space Sci. Rev. 2, 751.

    Google Scholar 

  • Sonett, C. P. and Colburn, D. S.: 1965, Plan. Space Sci. 13, 675.

    Google Scholar 

  • Sonett, C. P., Colburn, D. S., Davis, L., Jr., Smith, E. J., and Coleman, P. J.: 1964, Phys. Rev. Letters 13, 153.

    Google Scholar 

  • Sonett, C. P., Davis, L., Jr., and Coleman, P. J.: 1962, J. Phys. Soc. Japan 17, Suppl. II-A, 524.

    Google Scholar 

  • Spitzer, L.: 1956, Physics of Fully Ionized Gases, Interscience, New York.

    Google Scholar 

  • Spreiter, J. R., Summers, A. L., and Alksne, A. Y.: 1966, Plan. Space Sci. (in press).

  • Störmer, C.: dy1955, The Polar Aurora, Oxford Press.

  • Sturrock, P. and Spreiter, J. R.: 1965, J. Geophys. Res. 70, 5345.

    Google Scholar 

  • Thompson, W. B.: 1962, An Introduction to Plasma Physics, Pergamon Press, New York.

    Google Scholar 

  • Wolfe, J. H. and Silva, R. W.: 1965, J. Geophys. Res. 70, 3575.

    Google Scholar 

  • Wolfe, J. H., Silva, R. W., and Myers, M. H.: 1965, ‘Observations of the Solar Wind-Geomagnetic Field Interaction Region on IMP II and OGO I’, in Proc. of the Sixth COSPAR Symposium, Mar Del Plata, Argentina.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colburn, D.S., Sonett, C.P. Discontinuities in the solar wind. Space Sci Rev 5, 439–506 (1966). https://doi.org/10.1007/BF00240575

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00240575

Keywords