Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Experimental logics and Δ sup0inf2 - theories

  • Published:
Journal of Philosophical Logic Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Bibliography

  1. S.Feferman, ‘The Arithmetization of Metamathematics in a General Setting’, Fundamenta Mathematicae XLIV (1960), 35–92.

    Google Scholar 

  2. G.Gentzen, ‘Die Widerspruchsfreiheit der reinen Zahlentheorie’, Mathematische Annalen 112 (1936), 493–565. An English translation is in The Collected Papers Gerhard Gentzen, M.E. Szabo, editor, North-Holland Publishing Company, 1969, 338 pp.

    Article  Google Scholar 

  3. K.Gödel, ‘Ueber formal unentscheidbare Satze der Principia Mathematica und verwanter Systeme’, Monatschefte fur Mathematik und Physik 38 (1931), 173–198.

    Google Scholar 

  4. E.M.Gold, ‘Limiting Recursion’, The Journal of Symbolic Logic 30 (March 1965), 28–48.

    Article  Google Scholar 

  5. L.Henkin, ‘The Completeness of the First-Order Functional Calculus’, The Journal of Symbolic Logic 14 (September 1949), 159–166.

    Article  Google Scholar 

  6. D.Hilbert, ‘Uber das Unendliche’, Mathematische Annalen 95 (1926), 161–190.

    Article  Google Scholar 

  7. R.G. Jeroslow, ‘On Godel's Consistency Theorem’, manuscript from the School of Mathematics, University of Minnesota, dated July, 1971, p. 72

  8. R.G. Jeroslow, ‘Two Theorems on Experimental Logics’, Research Report 73-4, From the Department of Mathematics, Carnegie-Mellon University, distributed in February 1973. p. 11

  9. G.Kreisel, ‘Mathematical Logic’, in Lectures on Modern Mathematics, Vol. 3, (ed. by T.L.Saaty), Wiley and Sons, New York, 1963–1965.

    Google Scholar 

  10. G.Kreisel and A.Levy, ‘Reflection Principles and Their Use for Establishing the Complexity of Axiomatic Systems’, Zeitschrift f. math. Logik und Grundlagen d. Math. 14 (1968), 97–142.

    Article  Google Scholar 

  11. R.Magari, ‘Su certe teorie non enumerabili (Sulle Limitazioni dei sistemi formali, I)’, Ann. Mat. Pura Appl. (IV) XCVIII (1974), 119–152.

    Article  Google Scholar 

  12. R. Magari, ‘Significato e verita nell aritmetica planiana (Sulle limitazioni dei sistemi formali, II)’, to appear in Ann. Mat. Pura Appl.; abstract has appeared in Accademia Nazionale dei Lincei, serie VIII, LIV, fasc. 6, Guigno, (1973), 903–903.

  13. H.Putnam, ‘Trial and Error Predicates and the Solution to a Problem of Mostowski’, The Journal of Symbolic Logic 30 (March 1965), 49–57.

    Article  Google Scholar 

  14. H.RogersJr., Theory of Recursive Functions and Effective Computability, McGraw-Hill Book Company, New York, 1967, 457 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This research has been partially supported by NSF grant GP21067. Theorem 2 and Theorem 5 appeared earlier in [8]. We have also benefited from a grant of the C.N.R. (Italy).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jeroslow, R.G. Experimental logics and Δ sup0inf2 - theories. J Philos Logic 4, 253–267 (1975). https://doi.org/10.1007/BF00262039

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00262039

Keywords