Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Cognitron: A self-organizing multilayered neural network

  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

A new hypothesis for the organization of synapses between neurons is proposed: “The synapse from neuron x to neuron y is reinforced when x fires provided that no neuron in the vicinity of y is firing stronger than y”. By introducing this hypothesis, a new algorithm with which a multilayered neural network is effectively organized can be deduced. A self-organizing multilayered neural network, which is named “cognitron”, is constructed following this algorithm, and is simulated on a digital computer. Unlike the organization of a usual brain models such as a three-layered perceptron, the self-organization of a cognitron progresses favorably without having a “teacher” which instructs in all particulars how the individual cells respond. After repetitive presentations of several stimulus patterns, the cognitron is self-organized in such a way that the receptive fields of the cells become relatively larger in a deeper layer. Each cell in the final layer integrates the information from whole parts of the first layer and selectively responds to a specific stimulus pattern or a feature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  • Blakemore, C., Cooper, G.F.: Development of the brain depends on the visual environment. Nature (Lond.), 228, 477–478 (1970)

    Google Scholar 

  • Block, H.D., Knight, B.W., Rosenblatt, F.: Analysis of four-layer series-coupled perceptron. II. Rev. mod. Phys. 34, 135–142 (1962)

    Google Scholar 

  • Fukushima, K.: Visual feature extraction by a multilayered network of analog threshold elements. IEEE Trans. Syst. Sci. Cybernetics SSC-5, 322–333 (1969)

    Google Scholar 

  • Fukushima, K.: A feature extractor for curvilinear patterns: A design suggested by the mammalian visual system. Kybernetik 7, 153–160 (1970)

    Google Scholar 

  • Fukushima, K.: A feature extractor for a pattern recognizer. A design suggested by the visual system (in Japanese). NHK Techn. J. 23, 351–367 (1971)

    Google Scholar 

  • Fukushima, K.: Self-organizing multilayered neuron network “Cognitron” (in Japanese), Paper of Technical Group on Pattern Recognition and Learning, Inst. Electronics Comm. Engrs. Japan, PRL74-25 (1974); and 1974 Nat. Conv. Rec. of Inst. Electronics Commun. Engrs. Japan, No. S9-8 (1974)

  • Hubel, D.H., Wiesel, T.N.: Receptive fields of single neurones in the cat's visual cortex. J. Physiol. (Lond.) 148, 574–591 (1959)

    Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (Lond.). 160, 106–154 (1962)

    Google Scholar 

  • Hubel, D.H., Wiesel, T.N.: Receptive fields and functional architecture in two nonstriate visual areas (18 and 19) of the cat. J. Neurophysiol. 28, 229–289 (1965)

    Google Scholar 

  • Malsburg, C. von der: Self-organization of orientation sensitive cells in the striate cortex. Kybernetik 14, 85–100 (1973)

    Google Scholar 

  • Marr, D.: A theory of cerebeller cortex. J. Physiol. (Lond.) 202, 437–470 (1969)

    Google Scholar 

  • Marr, D.: A theory of cerebral neocortex. Proc. roy. Soc. Lond. Ser. B, 176, 161–234 (1970)

    Google Scholar 

  • Rosenblatt, F.: Principles of Neurodynamics, Washington: Spartan Books 1962

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fukushima, K. Cognitron: A self-organizing multilayered neural network. Biol. Cybernetics 20, 121–136 (1975). https://doi.org/10.1007/BF00342633

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00342633

Keywords