Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Skip to main content

Thermodynamic properties of nickel

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

This work reviews and discusses the data and information on the thermodynamic properties of nickel available through May 1984. These properties include heat capacity, enthalpy, enthalpy of transition and melting, vapor pressure, and enthalpy of vaporization. The recommended values for heat capacity cover the temperature range from 1 to 3200 K. The recommended values for enthalpy, entropy, Gibbs energy function, and vapor pressure cover the temperature range from 298.15 to 3200 K.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. D. Desai, Int. J. Thermophys. 8:621 (1987).

    Google Scholar 

  2. M. Maszkiewicz, Phys. Status Solidi A 47:K77 (1978).

    Google Scholar 

  3. The International Practical Temperature Scale of 1968, Metrologia 5:35 (1969).

    Google Scholar 

  4. A. Cezairliyan and A. P. Miiller, Int. J. Thermophys. 5:315 (1984).

    Google Scholar 

  5. O. Vollmer, R. Kohlhaas, and M. Braun, Z. Naturforsch. A 21:181 (1966).

    Google Scholar 

  6. H. Geoffray, A. Ferner, and M. Olette, Compt. Rend. 256:139 (1963).

    Google Scholar 

  7. E. L. Singleton, L. Carpenter, and R. V. Lundquist, Report of Investigation No. 5938, U.S. Bureau of Mines, (1962).

  8. J. K. Alley and H. R. Shell, Report of Investigation No. 5981, U.S. Bureau of Mines, (1962).

  9. K. Deardorff and E. T. Hayes, J. Met. 8:509 (1956).

    Google Scholar 

  10. R. A. Oriani and T. S. Jones, Rev. Sci. Instrum. 25:248 (1954).

    Google Scholar 

  11. H. Schofield and A. E. Bacon, J. Inst. Met. 82:167 (1953).

    Google Scholar 

  12. O. Kubaschewski, Z. Elektrochem. 54:275 (1950).

    Google Scholar 

  13. S. Van Dusan and A. I. Dahl, J. Rres. Natl. Bur. Stand. 39:291 (1947).

    Google Scholar 

  14. T. Wensel and W. F. Roeser, J. Res. Natl. Bur. Stand. 5:1309 (1930).

    Google Scholar 

  15. S. Umino, Sci. Rep. Tohoku Imp. Univ. Ser. 1 15:597 (1926).

    Google Scholar 

  16. K. Burgess and R. B. Waltenberg, Z. Anorg. Chem. 82:361 (1913).

    Google Scholar 

  17. L. Day and R. B. Sosman, Carnegie Inst. Washington Publ. 157 (1911).

  18. P. Petrovic, A. Feher, S. Molokac, and S. Janos, Acta Phys. Slovaca 31:135 (1981).

    Google Scholar 

  19. R. Viswanathan, Anal. Calorim. 3:81 (1974).

    Google Scholar 

  20. I. P. Gregory and D. E. Moody, J. Phys. F 5:36 (1975).

    Google Scholar 

  21. R. Caudron, J. J. Meunier, and P. Costa, J. Phys. F 4:1791 (1974).

    Google Scholar 

  22. R. Ehrat, A. C. Ehrlich, and D. Rivier, J. Phys. Chem. Solids 29:799 (1968).

    Google Scholar 

  23. R. Ehrat and D. Rivier, Helv. Phys. Acta 38:643 (1965).

    Google Scholar 

  24. D. I. Bower, E. Claridge, and I. S. T. Tsong, Phys. Status Solidi 29:617 (1968).

    Google Scholar 

  25. M. Dixon, F. E. Hoare, T. M. Holden, and D. E. Moody, Proc. R. Soc. London 285:561 (1965).

    Google Scholar 

  26. K. P. Gupta, C. H. Cheng, and P. A. Beck, J. Phys. Chem. Solids 25:73 (1964).

    Google Scholar 

  27. J. C. Walling and P. B. Bunn, Phys. Soc. Proc. 74:417 (1959).

    Google Scholar 

  28. J. A. Rayne, and W. R. G. Kemp, Philos. Mag. Ser. 8 1:918 (1956).

    Google Scholar 

  29. W. H. Keesom and B. Kurrelmeyer, Physics 7:1003 (1940).

    Google Scholar 

  30. W. H. Keesom and C. W. Clark, Physics 2:313 (1935).

    Google Scholar 

  31. R. H. Busey and W. F. Giauque, J. Am. Chem. Soc. 74:3157 (1952).

    Google Scholar 

  32. K. Clusius and J. Goldman, J. Phys. Chem. 31B:256 (1936).

    Google Scholar 

  33. A. Eucken and H. Werth, Z. Anorg. Allgem. Chem. 188:152 (1930).

    Google Scholar 

  34. E. O. Schmidt and W. Leidenfrost, Symposium on Thermophysical Properties, ASME Second, Progress in International Research on Thermodynamic and Transport Properties (ASME, Princeton, N. J., 1962), pp. 178–184.

    Google Scholar 

  35. H. L. Bronson and A. J. C. Wilson, Can. J. Res. 14A:181 (1936).

    Google Scholar 

  36. A. A. Vecher, A. G. Gusakov, and A. A. Kozyro, Deposited Documents, VINITI-740-76 (1976).

  37. J. Ohsawa, T. Nishinaga, and S. Uchiyama, Jpn. J. Appl. Phys. 17:1059 (1978).

    Google Scholar 

  38. C. Lapp, Compt. Rend. 186:1104 (1928).

    Google Scholar 

  39. L. N. Larikov, Yu. V. Usov, and A. V. Zolotukhin, Metallofizika 75:55 (1979).

    Google Scholar 

  40. W. H. Rodebush and J. C. Mickalek, J. Am. Chem. Soc. 47:2117 (1925).

    Google Scholar 

  41. R. Urzendowski and A. H. Guenther, AIP Conf. Proc. 17:256 (1974).

    Google Scholar 

  42. S. I. Aoyama and E. Kanda, J. Chem. Soc. Jpn. 62:312 (1941).

    Google Scholar 

  43. K. E. Grew, Proc. R. Soc. London 145A:509 (1934).

    Google Scholar 

  44. F. Simon and M. Ruhemann, Z. Phys. Chem. 129:321 (1927).

    Google Scholar 

  45. I. I. Novikov, V. V. Roshchupkin, A. G. Mozgovoi, and N. A. Semashko, Teplofiz. Vys. Temp. 19:958 (1981) [Engl. transi.: High Temp. 19:694 (1981)].

    Google Scholar 

  46. E. Pawel and E. E. Stansbury, J. Phys. Chem. Solids 26:607 (1965).

    Google Scholar 

  47. E. E. Stansbury, D. L. McElroy, M. L. Picklesimer, G. E. Elder, and R. E. Pawel, Rev. Sci. Instrum. 30:121 (1959).

    Google Scholar 

  48. F. Krauss and H. Warncke, Z. Metallkd. 46:61 (1955).

    Google Scholar 

  49. T. L. Arledge, Jr., M. S. thesis (University of Tennessee, Knoxville, 1963).

    Google Scholar 

  50. H. L. Bronson, E. W. Hewson, and A. J. C. Wilson, Can. J. Res. 14A:194 (1936).

    Google Scholar 

  51. M. Braun, R. Kohlhaas, and O. Vollmer, Z. Angew. Phys. 25:365 (1968).

    Google Scholar 

  52. F. M. Jaeger and E. Rosenbohm, Rec. Trav. Chim. 51:1 (1932).

    Google Scholar 

  53. H. Moser, Phys. Z. 37:737 (1936) (AD 631 200).

    Google Scholar 

  54. S. Valentiner, Optik 15:343 (1958).

    Google Scholar 

  55. J. W. Wright, M. S. thesis (University of Tennessee, Knoxville, 1964).

    Google Scholar 

  56. H. Klinkhardt, Ann. Phys. (Leipzig) 84:167 (1927).

    Google Scholar 

  57. T. K. Engel, K. C. Jordan, G. W. Otto, and D. M. Scott, Rev. Sci. Instrum. 35:875 (1964).

    Google Scholar 

  58. M. Ewert, Proc. K. Akad. Wet Amsterdam 39:833 (1936).

    Google Scholar 

  59. C. P. Butler and E. C. Y. Inn, A Radiometric Method for Determining Specific Heat at Elevated Temperatures, U.S. Naval Radiological Defense Lab. Rep. USNRDL-TR-235 (1958) (AD 200 857).

  60. C. T. Anderson, J. Am. Chem. Soc. 52:2301 (1930).

    Google Scholar 

  61. L. Neél, Compt. Rend. 207:1384 (1938).

    Google Scholar 

  62. E. Ahrens, Ann. Phys. (Leipzig) Ser. 5 21:169 (1934).

    Google Scholar 

  63. C. Sykes and H. Wilkinson, Proc. Phys. Soc. London 50:834 (1938).

    Google Scholar 

  64. J. Velisek and J. Vrestal, Cesk. Cas. Fys. 17:251 (1967).

    Google Scholar 

  65. Z. I. Ali-Zade and M. B. Mamedov, Fiz. Met. Metalloved. 30:1098 (1970) [Engl. transi.: Phys. Met. Metallogr. 30:215 (1970)].

    Google Scholar 

  66. Y. Tanji, H. Asano, and H. Moriya, Sci. Rep. Tohoku Imp. Univ. 24A:205 (1973).

    Google Scholar 

  67. J. Booker, R. M. Paine, and A. J. Stonehouse, U.S. Air Force Rep. WADD-TR-60-889 (1961) (AD 265 625).

  68. P. Weiss, A. Piccard, and A. Carrard, Arch. Sci. Phys. Et. Nat. 43:113 (1917).

    Google Scholar 

  69. R. C. Strittmater and G. C. Danielson, Measurement of Specific Heats by a Pulse Method, USAEC Rep. ISC-666 (1955).

  70. R. E. Blough, M. S. thesis (Iowa State University, Ames, 1969).

    Google Scholar 

  71. A. Cezairliyan and A. P. Miiller, Int. J. Thermophys. 4:389 (1983).

    Google Scholar 

  72. T. G. Kollie, Ph. D. thesis (University of Tennessee, Knoxville, 1969) (PB 188 138).

    Google Scholar 

  73. W. C. Hagel, G. M. Pound, and R. F. Mehl, The Free-Energy Change of Austenite-Pearlite Transformations, Office of Ordnance Research, Durham, N.C. (1954) (AD 39 272).

    Google Scholar 

  74. B. Persoz, Compt. Rend. 208:1632 (1939).

    Google Scholar 

  75. W. D. Kendall and R. Hultgren, Unpublished data, Dept. Mater. Sci. Eng., University of California, Berkeley (1960).

  76. A. Naccari, Atti. Torino. 23:107 (1887).

    Google Scholar 

  77. P. Schubel, Z. Anorg. Chem. 87:81 (1914).

    Google Scholar 

  78. F. Wust, A. Meuthen, and R. Durrer, Forsch. Gebiete Ingenieurw. VDI 204 (1918).

  79. S. V. Lebedev, A. I. Savvatimskii, and Yu. B. Smirnov, High Temp. USSR 9:578 (1971).

    Google Scholar 

  80. V. B. Predel and R. Mohs, Arch. Eisenhuettenwes. 41:1 (1970).

    Google Scholar 

  81. M. W. Chase, Jr., J. L. Curnutt, J. R. Downey, Jr., R. A. McDonald, A. N. Syverud, and E. A. Valenzuela, J. Phys. Chem. Ref. Data 11:695 (1982).

    Google Scholar 

  82. A. A. Vecher, A. G. Gusakov, and A. A. Kozyro, Zh. Fiz. Khim. 50:2437 (1976).

    Google Scholar 

  83. W. D. Powers and G. Blalock, USAEC Rep. AEC-CF-51-11-195 (1981).

  84. T. Greday and N. Lambert, Metall. Rep. CRM 54:23 (1979).

    Google Scholar 

  85. M. Maszkiewicz, B. Mrygon, and K. Wentowska, Phys. Status Solidi A 54:111 (1979).

    Google Scholar 

  86. F. L. Lederman, M. B. Salamon, and L. W. Shacklette, Phys. Rev. B 9:2981 (1974).

    Google Scholar 

  87. Z. I. Ali-Zade and A. A. Kerimov, Izu. Vyssh. Ucheb. Zaved. Fiz. 14:112 (1971) [Engl. transi.: Sov. Phys. J. 14:231 (1971)].

    Google Scholar 

  88. L. R. Ingersoll, Phys. Rev. 16:126 (1920).

    Google Scholar 

  89. H. Quinney and G. I. Taylor, Proc. R. Soc. London 163A:157 (1937).

    Google Scholar 

  90. I. Backhurst, J. Iron Steel Inst. (London) 162:324 (1949).

    Google Scholar 

  91. R. C. Strittmater, G. J. Pearson, and G. C. Danielson, Proc. Iowa Acad. Sci. 64:466 (1957).

    Google Scholar 

  92. J. L. Lytton, J. Appl. Phys. 35:2397 (1964).

    Google Scholar 

  93. G. C. Beakley, Jr., Ph. D. thesis (Oklahoma Agricultural and Mechanical College, Stillwater, 1956).

    Google Scholar 

  94. Ya. A. Kraftmakher, Fiz. Tverd. Tela 8:1306 (1966) [Engl. transi.: Sou. Phys. Solid State 8:1048 (1966)].

    Google Scholar 

  95. T. M. McMillin, M. S. thesis (Air Force Institute of Technology, 1964).

  96. L. J. Wittenberg and G. R. Grove, Reactor Fuels and Materials Development. Plutonium Research. July–September 1965, Rep. MLM-1301, Mound Laboratory, Miamisburg, Ohio (1966).

    Google Scholar 

  97. E. E. Stansbury, C. R. Brooks, and T. L. Arledge, Jr., J. Inst. Met. 94:136 (1966).

    Google Scholar 

  98. S. E. Hassett, A Slow-Irradiation Method for Determining Specific Heats of Metals, Lawrence Radiation Lab. Rep. UCRL-50637, University of California (1969).

  99. E. E. Stansbury, G. E. Elder, and D. L. McElroy, Dept. Chem. Eng. Rep. ORO-131, Tennessee University, Knoxville (1954) (AD 54475).

  100. R. Hultgren and C. Land, Trans. Metall. Soc. AIME 215:165 (1959).

    Google Scholar 

  101. D. L. Connelly, J. S. Loomis, and D. E. Mapother, Phys. Rev. B 3:924 (1971).

    Google Scholar 

  102. J. Korn and R. Kohlhaas, Z. Angew. Phys. 26:119 (1969).

    Google Scholar 

  103. N. V. Bodrov, G. I. Nikolayev, and A. M. Nemets, Russ. Metall. 5:64 (1982).

    Google Scholar 

  104. V. Bochkova, L. Sh. Tsemekhman, and B. P. Burylev, Izv. Vyssh. Uchebn. Zaved. Tsvetn. Metall. 3:55 (1981).

    Google Scholar 

  105. A. I. Chegodaev, E. L. Dubinin, A. I. Timofeev, N. A. Vatolin, and V. I. Kapitanov, Russ. J. Phys. Chem. 52:1229 (1978).

    Google Scholar 

  106. M. Farber and R. D. Srivastava, Anal. Calorim. 3:731 (1974).

    Google Scholar 

  107. N. A. Vatolin, A. I. Timofeev, and E. L., Dubinin, Russ. J. Phys. Chem. 45:1149 (1971).

    Google Scholar 

  108. J. Vrestal and J. Kucera, Metall. Trans. 2:3368 (1971).

    Google Scholar 

  109. H. Lindscheid and K. W. Lange, Z. Metallkd. 61:193 (1970).

    Google Scholar 

  110. C. B. Alcock and A. Kubik, Trans. Inst. Min. Metall. 77:C220 (1968).

    Google Scholar 

  111. J. D. McKinley, Jr., J. Chem. Phys. 40:120 (1964).

    Google Scholar 

  112. T. P. J. H. Babeliosky, Physica 28:1160 (1962).

    Google Scholar 

  113. D. D. Man and A. N. Nesmeyanov, Izv. Akad. Nauk SSSR Met. Topl. Otd. 1:75 (1960).

    Google Scholar 

  114. J. P. Morris, G. R. Zellars, S. L. Payne, and R. L. Kipp, Report of Investigation No. USBM-RI-5364, U.S. Bureau of Mines (1957).

  115. G. P. Kovtum, A. A. Kruglykh, and V. S. Pavlov, Ukr. Fiz. Zh. 7:436 (1962).

    Google Scholar 

  116. H. L. Johnston and A. L. Marshall, J. Am. Chem. Soc. 62:1382 (1940).

    Google Scholar 

  117. G. Bryce, J. Am. Chem. Soc. 2:1517 (1936).

    Google Scholar 

  118. H. L. Jones, I. Langmuir, and G. M. J. Mackay, Phys. Rev. 30:201 (1927).

    Google Scholar 

  119. R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, K. K. Kelley, and D. D. Wagman, Selected Values of the Thermodynamic Properties of the Elements (ASM, Metals Park, 1973).

    Google Scholar 

  120. T. Burtsev and A. M. Grigor'ev, Acta Phys. Slovaca 31:135 (1981).

    Google Scholar 

  121. S. Pulatova and N. A. Gorbatyi, Sb. Nauch. Tr. Tashk. Gos. Univ. Leninai 550:44 (1978).

    Google Scholar 

  122. A. Karasev, L. Sh. Tsemekhman, and S. E. Vaisburd, Gipronickel 1:21 (1976).

    Google Scholar 

  123. D. W. Bonnell, Ph. D. thesis (Rice University, Houston, Tex., 1972).

    Google Scholar 

  124. V. I. Chemykhin, I. N. Zedina, and S. E. Vaisburd, Inz.-Fiz. Zh. 34:870 (1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Desai, P.D. Thermodynamic properties of nickel. Int J Thermophys 8, 763–780 (1987). https://doi.org/10.1007/BF00500793

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00500793

Key words