Summary
Let X: Ω→ C(ℝ+;ℝn) be the Ornstein-Uhlenbeck velocity process in equilibrium and denote by τ A =τ A (X) the first hitting time of \(A \subseteq \mathbb{R}^n \). If A, B∈ℛn and ℙ(X(O)∈A=ℙ(X n (O)≦a), ℙ(X n (O)∈B=ℙ(X n (O)≧b)we prove that \(\mathbb{P}(\tau _A \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \leqslant } t)\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \geqslant } \mathbb{P}(\tau _{\{ \chi _n \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \leqslant } a\} } \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \leqslant } t)\) and \(\mathbb{E}\left( {\int\limits_0^{t \wedge \tau A} {1_{\text{B}} (X({\text{s}})d{\text{s}}} } \right)\underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \leqslant } \mathbb{E}\left( {\int\limits_0^{t \wedge \tau _{\left\{ {x_n \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \leqslant } a} \right\}} } {1_{\left\{ {x_n \underset{\raise0.3em\hbox{$\smash{\scriptscriptstyle-}$}}{ \geqslant } b} \right\}} (X({\text{s))}}d{\text{s}}} } \right)\). Here X n denotes the n-th component of X.
Article PDF
Similar content being viewed by others
Avoid common mistakes on your manuscript.
References
Baernstein II, A.: Integral means, univalent functions and circular symmetrization. Acta Math. 133, 139–169 (1974)
Bandle, C.: Isoperimetric Inequalities and Applications. Boston, London, Melbourne: Pitman Advanced Publishing Program 1980
Blumenthal, R.M., Getoor, R.K.: Markov Processes and Potential Theory. New York, London: Academic Press 1968
Borell, C.: The Brunn-Minkowski inequality in Gauss space. Invent. Math. 30, 207–216 (1975)
Ehrhard, A.: Inégalités isopérimétriques et intégrales de Dirichlet Gaussiennes. Ann. Sci. Éc. Norm. Sup. 17, 317–332 (1984)
Ehrhard, A.: Symétrisation dans l'espace de Gauss. Math. Scand. 53, 281–301 (1983)
Essén, M.: The cos πλ Theorem. Lecture Notes in Math. 467. Berlin-Heidelberg-New York: Springer 1975
Friedman, A.: Stochastic Differential Equations and Applications. Vol 1. New York-San Francisco-London: Academic Press 1975
Friedman, A.: Partial Differential Equations of Parabolic Type. Englewood Cliffs: Prentice Hall, N.J. 1964
Friedman, A.: Classes of solutions of linear systems of partial differential equations of parabolic type. Duke Math. J. 24, 433–442 (1957)
Nelson, E.: Dynamical Theories of Brownian Motion. Math. Notes, Princeton: Princeton University Press 1967
Port, S.C., Stone, C.J.: Brownian Motion and Classical Potential Theory. New York, San Francisco, London: Academic Press 1978
Simon, B.: Functional Integration and Quantum Physics. New York, San Francisco, London: Academic Press 1979
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Borell, C. Geometric bounds on the Ornstein-Uhlenbeck velocity process. Z. Wahrscheinlichkeitstheorie verw Gebiete 70, 1–13 (1985). https://doi.org/10.1007/BF00532234
Received:
Revised:
Published:
Issue Date:
DOI: https://doi.org/10.1007/BF00532234