Abstract
The second order partial differential equation which relates the potentialV(x,y) to a family of planar orbitsf(x,y)=c generated by this potential is applied for the case of homogeneousV(x,y) of any degreem. It is shown that, if the functionf(x,y) is also homogeneous, there exists, for eachm, a monoparametric set of homogeneous potentials which are the solutions of an ordinary, linear differential equation of the second order. Iff(x,y) is not homogeneous, in general, there is not a homogeneous potential which can create the given family; only if γ=f y /f x satisfies two conditions, a homogeneous potential does exist and can be determined uniquely, apart from a multiplicative constant. Examples are offered for all cases.
Similar content being viewed by others
References
Borghero, F, and Melis, A.: 1990,Celest. Mech. 49.
Borghero, F.: 1991,Rendiconti di Mathematica, Serie VII, Vol. 11, Roma, 559 p.
Bozis, G.: 1983,Celest. Mech. 29, 329.
Bozis, G.: 1984,Astron. Astrophys. 134, 360.
Bozis, G. and Mertens, R.: 1985, ZAMM65, 383.
Bozis, G. and Tsarouhas, G.: 1985,Astron. Astrophys. 145, 215.
Bozis, G. and Nakhla, A.: 1986, Celest. Mech.38, 357.
Bozis, G. and Ichtiaroglou, S.: 1987,Inverse Problems,3, 213.
Broucke, R. and Lass, H.: 1977,Celest. Mech. 16, 215.
Hietarinta, J.: 1984,Phys. Rev. Let. 52, No. 13, 1057.
Ichtiaroglou, S. and Bozis, G.: 1985,Astron. Astrophys. 151, 64.
Ichtiaroglou, S. and Meletlidou, E.: 1990,J. Phys. A: Math. Gen 23, 3673.
Melis, A. and Piras, B.: 1982,Rendiconti del Seminario della Facoltá di Scienze dell' Universitá di Cagliari, Vol. LII, fasc. 1.
P. du T. van der Merwe.: 1991, Phys. Lett. A.156, 216.
Ramani, A., Dorizzi, B. and Grammaticos, B. 1982,Phys. Rev. Lett. 49, 1539.
Shorokhov, S.G.: 1988,Celest. Mech. 44, 193.
Szebehely, V.: 1974, in E. Proverbio (ed),Proceedings of the International Meeting on Earth's Rotation by Satellite Observations, Univ. of Cagliari, Bologna.
Szebehely, V. and Broucke, R.:Celest. Mech. 24, 23.
Váradi, F. and Erdi, B.: 1983,Celest. Mech. 30, 395.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Bozis, G., Grigoriadou, S. Families of planar orbits generated by homogeneous potentials. Celestial Mech Dyn Astr 57, 461–472 (1993). https://doi.org/10.1007/BF00695715
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF00695715