Abstract
The familiar wormhole model of geometrodynamics is extended to allow for knotted embeddings of the initial hypersurface. It is shown that topology change is not only a means to modify the connectivity of the space, but also the knot invariants of its embedding. In a probabilistic framework the process of “wormhole scattering” can be expressed by creation and annihilation operators acting on the wave function of quantum geometrodynamics. Implications concerning Wheeler's exciton model of elementary particles, thef-gravity approach to hadronic matter, and interrelations with Jehle's flux quantization program are discussed.
Similar content being viewed by others
References
Bing, R. H. (1965). InTopology Seminar, Wisconsin, eds. Bing, R. H., and Bean, R. J. (Princeton University Press, Princeton, N.J.), p. 89.
Bing, R. H., and Martin, J. M. (1971).Trans. Am. Math. Soc.,155, 217.
Brill, D. (1972). InMagic without Magic: John Archibald Wheeler, ed. Klauder, J. R. (W. H. Freeman and Co., San Francisco), p. 309.
Christodoulou, D. (1975).Nuovo Cimento,26B, 335.
Conway, J. H. (1970). InComputational Problems in Abstract Algebra, ed. Leech, J. (Pergamon Press, New York), p. 329.
Crowell, R. H., and Fox, R. H. (1963).Introduction to Knot Theory. (Ginn and Co., Boston).
DeWitt, B. S. (1970). InRelativity, eds. Carmeli, M., Fickler, S. I., and Witten, L. (Plenum Press, New York), p. 359.
Feynman, R. P. (1972).Statistical Mechanics. (W. A. Benjamin, New York).
Finkelstein, D., and Rubinstein, J. (1968).J. Math. Phys.,9, 1762.
Fischer, A. E. (1970). InRelativity, eds. Carmeli, M., Fickler, S. I., and Witten, L. (Plenum Press, New York), p. 303.
Fox, R. H. (1962). InTopology of 3-Manifolds, ed. Fort, M. K., Jr. (Prentice-Hall, Englewood Cliffs, N.J.), p. 120.
Fuller, R. W., and Wheeler, J. A. (1962).Phys. Rev.,128, 919.
Gannon, D. (1975).J. Math. Phys.,16, 2364.
Geroch, R. P. (1966).J. Math. Phys.,36, 147.
Geroch, R. (1968).Ann. Phys. (N.Y.),48, 526.
Gluck, H. (1961).Bull. Am. Math. Soc,67, 586.
Gluck, H. (1965).Ann. Math.,81, 195.
Goldsmith, D. L. (1975). InKnots, Groups and 3-Manifolds, Papers Dedicated to the Memory of R. H. Fox, ed. Neuwirth, L. P. (Princeton Univ. Press, Princeton, N.J.), p. 3.
Gowdy, R. H. (1974).Ann. Phys. N.Y.,83, 203.
Graves, J. C. and Brill, D. R. (1960).Phys. Rev.,120, 1507.
Graves, J. C. (1971).The Conceptual Foundation of Contemporary Relativity Theory. (MIT Press, Cambridge).
Greub, W., Halperin, S., and Vanstone, R. (1972).Connections, Curvature, and Cohomology, Vol. I. (Academic Press, New York).
Greub, W., and Petry, H.-R. (1975).J. Math. Phys.,16, 1347.
Grünbaum, A. (1973).J. Phil.,70, 775.
Hu, S.-T. (1959).Homotopy Theory. (Academic Press, New York).
Jehle, H. (1915).Phys. Rev. D,11, 2147.
Kanitscheider, B. (1971).Geometrie und Wirklichkeit, Erfahrung und Denken Band 36. (Duncker & Humblot, Berlin).
Kauffman, L. H. (1974).Michigan Math. J.,21, 33.
Kiehn, R. M. (1975).Nuovo Cimento Lett.,12, 300.
Komorowski, J. (1973). In: The Greek Mathematical Society C. Carathéodory Symposium, p. 318.
Lindquist, R. W., and Wheeler, J. A. (1957).Rev. Mod. Phys.,29, 432.
Mielke, E. W. (1974).Bull. Am. Phys. Soc,19, 508.
Milnor, J. (1962).Am. J. Math.,84, 1.
Milnor, J. (1963).L'Enseignment Mathématique,9, 198.
Milnor, J. (1964).Fundam. Math.,54, 335.
Misner, C. W. (1960).Phys. Rev.,118, 1110.
Misner, C. W. (1963).Ann. Phys. (N. Y.),24, 102.
Misner, C. W., and Wheeler, J. A. (1957).Ann. Phys. (N.Y.),2, 525, reprinted in Wheeler, J. A. (1962).Geometrodynamics. (Academic Press, New York).
Misner, C. W., Thome, K. S., and Wheeler, J. A. (1973).Gravitation. (A. W. Freeman and Co., San Francisco) (quoted as MTW).
Patton, C. M., and Wheeler, J. A. (1975). InQuantum Gravity, eds. Isham, C. J., Penrose, R., and Sciama, D. W. (Oxford University Press, London), p. 538.
Penrose, R. (1975). InQuantum Gravity, eds. Isham, C. J., Penrose, R., and Sciama, D. W. (Oxford University Press, London), p. 268.
Price, P. B., Shirk, E. K., Osborne, W. Z., and Pinsky, L. S. (1975).Phys. Rev. Lett.,35, 487.
Regge, T., and Teitelboim, C. (1974).Ann. Phys. N. Y.,88, 286.
Reidemeister, K. (1932).Knotentheorie, in Ergebnisse der Mathematik, Vol. 1. (Chelsea Publishing Company, New York).
Sakharov, A. D. (1972). “The Topological Structure of Elementary Charges and CPT-Symmetry,” in “Problems of Theoretical Physics, A Memorial Volume to Igor E. Tamm.” (“NAUKA”, Moscow, 1972), p. 243.
Salam, A. (1975). InQuantum Gravity, eds. Isham, C. J., Penrose, R., and Sciama, D. W. (Oxford University Press, London), p. 500.
Schubert, H. (1956).Math. Z.,65, 133.
Seifert, H., and Threlfall, W. (1934).Lehrbuch der Topology. (Chelsea Publishing Company, New York).
Strazhev, V. I., and Tomil'chik, L. M. (1973).Sov. J. Part. Nucl.,4, 78.
Stachel, J. (1974). inBoston Studies in the Philosophy of Science, Volume XX, Schaffner, K. F., and Cohen, R. S., eds. (D. Reidel Publishing Company, Dordrecht-Holland), p. 31.
Sumners, D. W. (1971).Comm. Math. Helv.,46, 240.
Sumners, D. W. (1972).Proc. Cambridge Phil. Soc.,71, 1.
Waldhausen, F. (1968).Topology,7, 195.
Westenholz, C. (1971).Ann. Inst. Henri Poincaré,XV, 182.
Wheeler, J. (1962). InLogic, Methodology and Philosophy of Science: Proceedings of the 1960 International Congress, eds. Nagel, E., Suppes, P., and Tarski, A. (Stanford University Press, Stanford, Calif.), p. 361.
Wheeler, J. A. (1968).Einsteins Vision, (Springer-Verlag, Berlin) contained in part inBattelle Rencontres: 1967 Lectures in Mathematics and Physics, DeWitt, C, and Wheeler, J. A., eds. (W. A. Benjamin, New York).
Wheeler, J. A. (1970a). InAnalytic Methods in Mathematical Physics, eds. Gilbert, R.P., and Newton, R. (Gordon and Breach, New York), p. 335.
Wheeler, J. A. (1970b). InRelativity, eds. Carmeli, M., Fickler, S. I., and Witten, L. (Plenum Press, New York), p. 31.
Wheeler, J. A. (1973). InThe Physicist's Conception of Nature, ed. Mehra, J., (D. Reidel Publishing Company, Dordrecht-Holland), p. 202.
Whiston, G. S. (1973).Int. J. Theor. Phys.,3, 99.
Whiston, G. S. (1975).Int. J. Theor. Phys.,12, 225.
Yanagawa, T. (1969).Osaka J. Math.,6, 447.
Yanagawa, T. (1970).Osaka J. Math.,7, 165.
Yodzis, P. (1973).Gen. Rel. Grav.,4, 299.
Author information
Authors and Affiliations
Additional information
Work supported by a grant of the Studienstiftung des deutschen Volkes and in part by National Science Foundation grant No. GP 30799 X to Princeton University.
Rights and permissions
About this article
Cite this article
Mielke, E.W. Knot wormholes in geometrodynamics?. Gen Relat Gravit 8, 175–196 (1977). https://doi.org/10.1007/BF00763546
Received:
Issue Date:
DOI: https://doi.org/10.1007/BF00763546